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FOREWORD

This two-volume set is the result of an investigation done over

the past several years on basic properties of Strip Transmission

Line. The available literature on the subject is scattered through-

out various periodicals, Government reports, unpublished theses and

private comunications between individuals. In many cases the theo-

retical developments are somewhat obscure and lack experimental veri-

fication. It was the purpose of this work to pull all basic information

on Stripline together in one place, clarifying theoretical developments

where necessary and experimentally verifying theory where no previous

experim-ental work had been done. At the same time obvious extensions

to theoretical derivations were made to produce new results.

The investigation was done with three groups of people in mind.

Those individuals who desire only to design Stripline componern's and

are not concerned with the theory may use the design charts which are

proided with examples on their use in each chapter. People somewhat

interested in the theory but not interested in detail may peruse the

main text in addition to the design charts. Finally, those desiring

detail may refer to the Appendices in addition to the main text.

This work has been previously circulated on an individual chapter

basis. This approach was taken to circulate the information as it was

compiled, thereby making it immediately available to any interested

user. While a conscientious effort has been made to keep errors to a

minimu,, some will undoubtedly result. The author will be indebted to

those bringing any such errors to his attention and will appreciate

any comments regarding the work.



ABSTRACT

6tripline components for high speed logic are compared to their

equivalent waveguide components with respect to size and cost. A

survey is then made of papers written on Characteristic Impedance.

Cohn's derivation is chosen and developed since it is the most widely

accepted in the literature. Expressions are derived for impedances

in the high and low ranges through the use of the Schwartz-Christoffel

Transfonation and the results expressed in easily used graphical

form. Experimental verification of the theoretical equations is made.

Impedance measurements in Stripline at microwave frequencies

require the use of a slotted line. Since slotted lines in Stripline $

were not commercially available until recently, it was either necessary

to build a laboratory model in Stripline or to use a coaxial slotted

line and a transition to Stripline. Since commercial coaxial

Slotted Lines are readily available and a Stripline laboratory model

would be expensive and time consuming to produce, it was decided

that the coaxial slotted line with its attendant transition was the

beat approach. It is in this transition that the problem arises. The

junction introduces a discontinuity which must be taken into account.

By making the rather good approximation that the Junction is lossless,

a bilinear transformation may be used to relate the two sides of the

junction. A theoretical derivation is made and an example worked to
illustrate the practical aspects of the solution. It was found that,



while this method cannot be used to find the Characteristic Impedance

V of Stripline, if the Characteristic Impedance is known, the impedance

of any unknown Stipline load can be found.

The history of work done on Stripline attenuation is discussed.

Cohn's 37 analysis is accepted as the most desirable for engineering

use since his results are expressed in a convenient graphical form.

Following Cohn, the attenuation is expressed as the sum of dielectric

attenuation and conductor attenuation. Working expressions are

developed for dielectric and conductor attenuation, the "incremental

38
inductance" rule of 1.moeler being used to determine conductor

attenuation. The results are shown in easy-to-use graphical form.

Experimental verification of Stripline attenuation is shown using a

Stripline Spiral. Good correlation is obtained between measured and

theoretical values of attenuation up to 3.5 Krnc. It is believed that

the discrepancy above 3.5 I c is due to an increase in loss tangent

and a decrease in dielectric constart above this frequency.

A transfer function for Stripline is found using standard

transmission line formulation. This transfer function is broken

into two parts, dielectric response and skin effect response. A set

of curves is given for dielectric response. Skin, effect response is

46
found from the curves in an article by Wigington and Nahman which is

included as an Appendix. Finally, a practical example is worked

demonstrating the use of the analysis. Comparison of the results of

this example with those determined experimentally shows good correlation.
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CHAPTER I

II7PRODUCTION

As man endeavors to delve further and further into the

realm of the unknowni, his problems become more and more complex.

The invention of the electronic computer has greatly aided

this quest for knowledge in that it enables problems that

would have taken a lifetime using antiquated methods to be

solved in a short length of time. Computing speed has gradually

been incrased in order to handle extremely complex probles in

a reasonable le~ath of Limje.

Of course there are wany problems whose answers would

be useless if not obtainable in a specified length of time.

This type of problem dictates the realization of even faster

coiu pxtit speeds than are now available. Here lies the

problem. Existing lumped constant systems are limited in

their upper operating frequencies by the stray capacitance

and inductance associated with them.

The logical question asked at this point then:

"Why not use stL.ndard micr,.rveo techniques to build a

computer?". The questicn is easily answered by two

considerations: Size and cost. A simple example will

serve to show how bLlky even the simplest waveguide

cornuter would be. Suppose a computer having a carrier

i
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frequency of 3 kmc is made of 1000 logical elements the

logical elements being Magic T's. A rough calculation shows

that the logical elements and their associated interconnections

exclusive of power supplies, signal generators etc. would

require a room of 1000 cubic feet (see Appendix 1). Consider-

ing the logical element to be made up of one Magic Tee and

a small amount of flexible waveguide or coaxiable cable as

A required by the logical configuration, the cost of 1,000

elements would be roughly $160,00 plus the cost of connecting

sections. These simple examples serve to show the inadvisability

of attempting to build a computer out of waveguide.

Once a computer built of waveguide components has been

ruled out, the reader will undoubtedly ask, "Why not build

it out of some configuration of coaxial and multiple wire

transmission line?".

In the first place, the author has never heard of

logical elements made of coaxial or wire transmission lines.

However, even assuming that such logical elements could be

made) the bulk of the resulting computer would be prohibitive.

Admittedly its cost would be considerably less than that of

a microwave computer.

How then are we to build a computer operating at microwave

frequencies? The answer lies in a new type of transmission

line called strip transmission line. Two basic types of strip

, = *



transmission line exist; the so called "Microstrip". which

consists of a strip conductor over a single griand p2 :e,

and the type consisting of a strip placed symmetrically

between two ground planes. This latter type is variously

termed as "Stripline", "Tri-Plate", balanced strip line,

shielded strip line, etc. In this paper it will be re-

ferred to as "Stripline".

While both "Microstrip" and "Stripline" possess merit,

the latter type is in more popular demand due to its lower

loss and smaller stray coupling as compared to "Microstrip".

These considerations indicate a greater versatility of

application for "Stripline" and lead to the conclusion

that for our purposes only "Stripline" need be considered.

All analysis therefore, will be done in terms of the

"Stripline" configuration. "Microstrip" will not be

considered further. Figures 1-1 and 1-2 show the physical

configurations of '"icrostrip" and "Stripline" respectively.

Fig 1-1 "Microstrip Cross Section"
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Fig 1-2 "Stripline Cross Section"

The explanation for the continuing interest in "Stripline"

lies in its advantages over coaxial and waveguide construction,

notably savings in production cost, in weight and volume and

in time and expense in the development of new circuits.

However certain disadvantages exist also. The principal of

these are: (1) an apparent unsuitability for long runs "of

line; (2) a higher attenuation, lower r.?sonant Q and lower

power capacity than waveguide (although the parameters are

at least comparable to those of coaxial line); (3) a dependence

upon dielectric materials for dimensional stability and

strength and (4) a partial loss of constructional advantages

in the case of circuits that cannot be reduced to planar form.

For many circuit applications these disadvantages are un-

important and are far outweighed by the advantages. Also each

disadvantage can be minimized through careful design procedure.
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The manufactUure of S ripline is well suited to priuted

circuit techniques such as photo-etching of copper foil

lainated on a dielectric surface. As such it bears all of

the advantages of printed circuits, i.e. ease of repro-

ducability, low cost and spial]. size.

A comparison of a 1000 logical element computer made of

waveguide and of "Stripline" is in order. The cost of our

1000 element "Stripline" comnute'-- would be in the neirhbor-

hood of 61.,700 plus conncting sections as opposed to $1-,000

plus connecting sections f'or waveguide (see Appendi:x 1). If

the 1,000 logical elements in the wave,uide exaiple irere made

of "Stripline" the resulting vcluve would be only 1.95 cu. ft.

as c-)pared to 1,000 cu. ft. for waveguide.

Logical elements are realized by printing hyfbrid rings

and using them to perfonn the le.-ical functions. To realize

a given logicLl confii-aratioi. then, say an adder, we would

(1) draw the circuits; (2) maake a drawing and photograph it

to Get a negative; (3) reduce the neGative to the required

size; (R) print two double clad boards on one side and (5)

attach connectors and bolt the boards together with their

printed sides facing each other.

T. , previous paragraphs have shown that "Stripline"

could indeed be used to construct a practical coiputer'

operating at microwave frequencies. The follo.ing chapters

of this report will therefore concern themselves with the



basic characteristics of "Stripline" such as characteristic

impedance, attenuation, transient response, etc. in order

that we may exploit "Stripline" to build an operating device.

A second report will be written describing the logical

design of a toy computer.

t

Al

-



CHAPTER II

DETERMINATION OF STRIPLINE CHARACTERISTIC IMPEDAN1CE

A. History.

Close examination of the literature discloses that

several articles concerning strip transmission lines have

been written. In the opinion of the author the article

done by Oliner 2is by far the best. As a result the past

history of Characteristic Impedance analysis as done in

this paper is essentially that of Oliner.

Most of the people engaged in theoretical work on

symmetric strip lines have in one way or another been

concerned with the determination of suitable expressions

for its Characteristic Inpedance. While it is almost

impossible to include the contributions of everyone in-

volved, the discussion below is felt to be fairly inclusive

and typical of the different methods of approach that have

been used. The earlier efforts on this topic dealt with

expressions for zero-thickness center strips while the

later investigations were concerned with strips of finite

thickness.

7
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Since the dominant mode in symmetrical strip line is a

TE4 mode, the field distribution in the transverse plane is

a static one, and the Characteristic Impedance follows directly

from the knowledge of the static capacity of the line. This

point was recognized by all investigators.

For zero-thickness center strips, pioneer work was

conducted by Barrett fox the low impedance range, which

corresponds to lines for which the strip width is greater

than one-half the grcund plane spacing. He considered the

line cross-section to be made up of a parallel-plate region

in the center and fringing capacities at the sides, and on

this basis derived a simple and useful expression. At the

time he was unaware of a rigorous solution for zero-thickness

strips by Oberhettinger and Magnus$ which is based on a con-

formal mapping and is valid for any ratio of strip width to

ground plane spacing. Hayt5has more recently considered the

effect of finite width ground planes. He obtained a rigorous

solution via conformal mapping procedures for ground planes

of finite width in which the center strip and the ground planes

are all of zero-thickness, and he concluded that for the line

dimensions employed in practice the assumption of infinite

width ground planes introduces negligible error.

A variety of approximate expressions has been obtained

for lines with center strips of finite thickness. The first

of these expressions, historically, was deduced by Begovich6
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who followed the lead of Barrett out ekployed the fringing

capacity appropriate to a strip of finite thickness. W-'ile

such a procedure would yield an expression suitable for the

low impedance range, his result is of questionable value be-

cause the fringing capacity employed was given in a very

slowly convergent form. The next contribution along these
lines was due to Cohn7 and Oliner8' working independently

but arriving at identical results. These results apply

separately to the low impedance and the high impedance

ranges, and very satisfactorily overlap in the inter-

mediate region (strip width to ground plane spacing ratio

approximately equal to 0.35). The expression for the low

impedance range is that of Begovich, except for the use of

a fringing capacity which is exact and explicit. The

expression for the high impedance range was based upon a

far field equivalence between a rectangular and circular

cylinder. These points are elaborated upon somewhat below.

Approximate axpressions for lines of finite thickness

10
center strips were also derived by Pease, following a

suggestion of Wheeler. Their results yield rigorous upper

and lower bounds for Characteristic Impedance, and an

approximate expression which lies between these bounds. The

results are best applicable to the low impedance range.

Pease and Mingins U have also derived a "universal" expression

which is a composite of simpler ones applicable only to
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special ranges of line dimensions. Their composite expressicn

yields the Characteristic Impedance to a high degree of

accuracy, and is valid for a center conductor of arbitrary,

but rectangular, aspect ratio. Skiles and Higgins12 have

also developed an approximate procedure for the case of

arbitrary but rectangular aspect ratio; their method is

capable of arbitrarily high accuracy if the procedure is

carried out far enough.

Several rigorous solutins have also been derived for

lines with center conductors of finite thickness. An

expression due to Greenhill13 has long been in the literature,

but it is in implicit form and is not amenable to calculation.

Begovich14 has derived a rigorous result which is expressible

as the sun of a parallel plate term, a fringing capacity

term, and correction terms. He proceeded by breaking up the

cross-section into elementary regions, solving Laplace's

equation in each region separately, and then matching the

solutions across the respective boudaries. The infinite

set of equations obtained thereby was then solved and the

solution case into the above-mentioned form. A rigorous

solution, obtained via conformal mapping procedures, has

also been derived by Snow 15 Although his result is in implicit

form, numerical results may readily be obtained from it.

His result has not been published, however, but remains in

16his unpublished notes. A recent sulution, due to Bates,
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has also been derived by conformal mapping methods. It is

also in implicit form, and readily yields numerical results.

B. Recommended Approach.

In the opinion of the writer, the solutions of Cohn

serve as the most practical expressions available for the

Characteristic Impedance of lines with center conductors

of finite thickness, since the expressions are simple in form

and are rather accurate (about 2% at worst). In addition,

Cohn's published curves7 are in very useful form. In order

that the reader may understand Cohn's derivation, it is

included in this paper. Cohn's derivation is divided into

two parts, namely (1) the low impedance range and (2) the

high impedance range. Each case will be discussed in

general terms in the text in order to satisfy the casual

reader. If rigor is desired, the complete mathematical

analysis will be found in the Appendices. An Appendix

containing an abbreviated discussion of Theory of A Complex

Variable is included for the reader who may need a short

review of complex variable theory before attempting to

understand the Characteristic Impedance derivation.

C. Derivation of Characteristic Impedance in the Low Rane.

The treatment of the low impedance range parallels

that of Barrett 3 and Begovich, and proceeds as shown in Fig 2 -1.

The actual line cross-section of Fig 2-la is regarded as composed

of a central parallel plate region with fringing capacity at
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the sides. A knowledge of this fringing capacity permits

the construction of the equivalent structure of Fig 2-1b,

which is a parallel plate line of width D. The expression

for D in terms of the parameters of the line of Fig 2-la is

given in Appendix IV.

!D
II1 i--I I I

iI I I

(a) (b)

Fig 2-1 Treatment of the low Zo Range

The general development procedure has been described

in the abcve paragraph. Let us now consider it in some detail.

Stripline, like coaxial and transmission line operates

in the TEM mode. This mode is characterized by the property

that the electromagnetic waves contain neither electric nor

A, magnetic fields in the direction of propagation. Since

electric and magnetic field lines both lie entirely in the

-transverse plane, these may be called transverse electro-

magnetic waves (abbreviated TEM).

The above explanation of the TEM mode of propagation

will probably satisfy the casual reader but if more rigor
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is desired Appendix II may be consulted. This Appendix \I
contains a mathematical derivation of the TEM mode be-

ginning with such basic relations as the circuital law

of magnetism and Faraday's law and concludes with Laplace's

equation. Since Lplace's equation has a static solution,

we may conclude that the TEM mode is exactly a static

distribution and analyze it as such. The equations for

Characteristic Impedance, velocity of propagation etc.

are therefore the same as these for any standard

transmission line. The well knoim expression for

Characteristic Impedance in Transmie6ion line theory is:

z L/C (2-1)

Where:

L equals inductance/unit length

and

C equals capacitance per unit length

The velocity of propagation of the principal mode is given

by
1

vs

TLC (2-2)

Solving (2-1) and (2-2) simultaneously

1
0 V(2-3)

but v - (-- /)
JCV.
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where: V- magnetic permeability (Equals 1 for air and
most dielectrics).

s = permittivity of tile medium.

v = velocity in the medium with properties
g and e

and
c = the velocity of light

8
= 3 x 10 meters/see

therefore:
Zoer (2-5)

3 x 10 C

To find Zo we must now develop an expression for C.

Knowing this quantity we can also find attenuation and

power handling capabilities as will be seen later.

In the finding of the ecorrect value of capacitance

to use in formula (2-5), it will be necessary to perform

a Schwarz-Christoffel mapping in the complex plane. Suqh

a mapping requires a knowledge of Theory of a Complex

Variable for an understanding of the procedure. A short

review of complex variable theory and the theory of the

Schwartz-Christoffel transformation is included as

Appendix III. Such a review shou.d be sufficient for

the reader already somewhat familiar with this theory.

The reader who is not familiar with complex variables is

referred to the many excellent texts on the subject, of

17 1819
which Churchill, Ahlfors1, or Guillemin, are best in the

author' s opinion.
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Consider the cross-section of Stripline as shown

in Fig 2-2.

I1__I ,,%' lEZZZI / "r',<Z

Fig 2-2 Cross Section of "Stripline" used for

Capacitance Calculations

As can be seen by inspection, the capacity of the

Stripline configuration is essentially that of two parallel

plate capacitors connected in parallel plus a correction for

fringing capacitance Cf'. The parallel plate capacitance for

Stripline is lerived in Appendix IV. The result may be

used to compute Characteristic Impedance up to 25 ohms and is:8. 812 £rV

Cpp- x 161*" (8) (2-6)
4xl T b b-t

where

w W Center conductor strip width-cm

b = Ground plane spacing - cm

t - Plate Thickness - cm

re Dielectric Constant

Cpp= Parallel Plate Capacitance - f/cm
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Above 25 ohms we must add a term for fringing capacitance

to C pp The total capacitance per unit length of line is then:

Ctp C + C' (2-7)

where
Cf t mf (w, g) (Fringing field capacitance in f/cm)

Ctp - Total capacitance per unit length of line

Equation (2-6) then becomes:

Ctp x l0 4 ! 8.842 erw  + Cf) (2-8)
b-t

Inserting the results of equation (2-8) into equation (2-3)

there is obtained:

zo a 9415 C, (2-9)
6-r (- + 07-o 5 e r

Equation (2-9) is precisely Cohn's result and is in a

convenient working form.

Before equation (2-9) is of any use to us, we must

find an expression for the fringing capacitance Cf'. This

required expression is obtained through the use of a

Schwarz-Christoffel mapping in the complex plane. The

essential procedure is described in the introduction to this

section i.e. finding an equivalent Stripline structure

which takes into account fringi,; capacitance and can therefore

be treated as an ideal parallel plate capacitor. The author

has performed this mapping to check the results given in the

literature.



174

The results check those given by Cohn and can be

conveniently expressed in working form as:

cf' o.o885G ((-Wtb) in 1)

1l -1) in ( 1 -1) mmf/cm (2-10)

(1 t/b)2

D. Determinatiun of Characteristic Impedance in the High Range.

In the high impedance range, the strip width is small

compared to the ground plane spacing, as shown in Fig 2-3a,

and the approximation employed assumes that the grould planes

are far away from the center strip. As a result, one can

employ a far field equivalence between the actual rectangular I

center conductor and a circular or a zero-thickness strip

center conductor, as indicated in Fig 2-3b. The insertion

of this equivalence into the known expressions for the

Characteristic Inpedance of a round conductor between ground

planes, or a stripline with a zero-thickness center conductor,

yields expressions simple in form for the high impedance

range. While only the equivalence to a round conductor is

employed in Cohnts curves, the equivalence to a zero-thickness

strip yields a result of high accuracy for very thin center
22

strips. It has also been recognized by Pease that the

Characteristic Impedance in the high range of the line

possessing a rectangular center conductor lies between that



of the lines with a flat center strip placed horizontally

and that with a similar strip placed vertically. The

situation is illustrated by Fit-. 2-3c. Since the Oharacteristic

Imp3edmices Z 0 and Z " of FJ g 2-3c are known, this reco.nition

mcahs available upper and loiter bounds on the result of interest.

C= 0 -

(b)
2a)

z 0 > Zo > z"

(C)

Fir, 2-:-1 Treatnent of tne high Z range
0

E.xiziination of the literature shows Cohn's results to be

the most widely accepted. As a result, the derivation

given iere will be essential.y that of Cohn.

The Characteristic Impedance of a transmiss.on line

consisting of a circular conductor of dianeter d centered0

between two parallel ,,round planes is well known. It was

derived by Franhc 123 in 19:3 and as it has stood the test

of time, its derivation will not be included here; only

the result will be stated. It is:
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Zin 4 ohms (2-11)

where the parameters are as shown in Fig 2-4a. Fig 2-4b

is the familiar cross section of "Stripline" which is

repeated here for convenience. As shown in Fig 2-3 and

discussed in the beginning of this section, if "d is

T t

FiC 2-;: Center Conductors of SmalL Cross Section Yielding

Equivalent Characteristic Impedance

sinaJ.J, coimipared to "b", we can find an equivalence between

routd and rectangular cross sections via the Schwarz-

Christoffel Transformation and then use equation (2-11),

This mapping between rectangular and circular cross section

has been perfoned by Flstuzer' 4 and is included as Appendix V.

The results are given in graphical form and are shown as

Fig 2-). When Fig 2-5 is used in conjunction with equation
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(2-11), the accuracy increases as d0+ 0. However comparison

with a more precise analysis by h4oley and Eldred 'V shows

equation (2-11) to be actnte to wiih.n c~e per ccnL for d

:-s large as b/2.

E. Co%arison with an E-'act Cae.

The accuracy of equation (2-9) and (,"-1) nay be

Ooerettine;- -.nd 1 ..... lz w~ t-,-. 16. i(. *or 1 0. ThLir

resO is

xItherc; K(:.) and 'K(I.' ) are c'eu j.J. intu rvcJ s

the i'irs'L h:ind and w erc

i.= se,

1.'= tanh 21_

Fi; 2-, shows a comarison o' equations (2-.), (2-II) r.nd

( :-J.). TI-e a:,rauirn, error occur.. at w/b 0 0. 35 w],erc (2-r";)

and (:-).J.) J.rnterseet enid is cnl]y 1.2 per cent. At v/b =

and 0.5, , the error is reluceO to 0.4 pcr cent while for

lesscr and greater w/b, the error rapidly approaches zero.

SinWilar plots of (2-?) aid (2-11) have been made for

strips iavinL t/L, uij o 0..25, and in all cases, the curves

tcnd to mere touether :t lc.st as well as in Fi, 2-t,.
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As one would expect from a consideration of fringing-field

interaction, the intersection of the curves remains very

near the same value of w/(b-t) - 0.35. A study of flux

plots for t n 0 and t > 0 leads one to believe that the

error at the intersection point will be no greater in

the ic.tter case than in the formier, and very likely will

be smaller. Hence the proper use of (2-9) and (2-11) in j
their assigned parsmjeter ranges is believed to result in

an error of no more than 1.2 per cent near w/(b-t) = 0.35, 4
and considerably less at other values of w/(b-t).

F. Graphical Presentation of Z .{

In Fig 2-7, a ftemily of Z curves are plotted versus 11/

with t/b as parameter. Tie c urve for t/b = 0 is exact, the

,oints having been computed from (2-12). The other curves I
are computed from (2-9) and (2-11). Equation (2-9) was used j
for ./(b-t) > 0.3-; and (2-1.) for w/(b-t) < 0.35. It is

seen that the effect of thichness on the characteristic

impedance is substantial, even for thicknesses only a few

per cent of the plate spacing.

G. Conclusions.

Two simple formulas and auxiliary curves are presented

for the characteristic impedance of the shielded stripline.

By sAns of these for9ulas, accuracy sufficient for any I
engineering purpose is obtainable for all strip widths and

for thicknesses up to at least a quarter of the plate spacing.

Fig 2-7 displays the characteristic impedance in a form that

should be particulcaly useful to the design engineer.

I
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H. Characteristic Inpedance, Masurement.

1. Theory.

1 ,ch time has been spent in the theoretical

developriient of erpressions for the Characteristic Impedaice

of Striplii~e. This investigation resulted in two equations.

The first applies wheni the condition -- > 0.'1 is iet and is

b-t

Z - -"" ohms (,-9)

1 -L/b 0.0885 r

The second equation applies when < 0.35 and was given as

Z O In ohms

r

Let us examine equat.o.s (.2-9) and (2-11) tc see how

Characteristic Impedance may be measured in order to de-

term:3nc te validi 'L., of the theoretical development. We

see that if senples of Stripline were built using two double

clad boards, the thickness of the center strip (t) and the

distance between :..round planes (b) would be fixed as -vould

the dielectric constant taod the frinZing, capacitances

(assuming the ground plane is at least eight times wider

than the center strip). The only variable is then the

strip width (w).

H
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2. Hardware.

In line with this reasoning, a number of Stripline

samples were built having various strip widths. The boards

were double clad with two ounce copper having an average thick-

ness of 2.7 mils. Since two of these boards are placed back-

to-back, the thickness of the center strip was 5.4 mils.

The dielectric material goes under the trade name of "Dilectro"

or "GB 112 T" and was made by Continental Diamond Fiber Co.

It has a dielectric constant of 2.73 and has an average thick-

ness of 57 mils. Consideration of the cross section of

Stripline then shows that the distance between ground planes

is 119 mils. The strip width (w) was determined by using

the average of five readings made through the use of a

measuring device accurate to 0.1 mil. The Cf I term is a

function only of t and b and can be determined from the

results of Appendix IV (i.e. Fig A4-7). Thus all the para-

meters in equation (2-9) are known. In equation (2-11),

the quantity do must be determined. Knowing w and t and

using Fig 2-5, d0 is easily found. The resulting Character-

istic Impedances for the various strip widths as calculated

from equation (2-9) and (2-11) are shown in the second

colum of Table 2-1 and as the broken line on Fig 2-9.
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3. Masurement Technique.

We now know what that Characteristic Impedance of

the Stripline samples should be. The question now is,

"Flow do we measure it?.' Consider equation (2-5) which was I

0  r

- x 10 C

Equation (2-5) has two unknoims, ,Fcr and the capacitance C.

The dielectric construt is given in most handbooks and for

GB 1J.2 T is :2.73. Since the initial uses of Stripline will

be at 3 lzrc, it would be desirable to iake Characteristic

Lpedance measurements at t' :at frequency. However, to the

authors' knowledge, the best RF bridges have a cut off j

frequency of 100 mc. It was therefore desirable to make the

measurements at a relatively low frequency and extrapolate

the answer to 3 kmc. Discussions between the author and

the Bureau of Standards indicated that the dielectric

constant is unchanged at frequencies below 20 kmc and perhaps

30 kmc! Two bridges were obtained; a Model B 801 Wayne Kerr

V.H.F. Admittance Bridge usable in the frequency range 1 to

100 megacycles and a Model B 601 R. F. Impedance Bridge

usable in the frequency razge 15 kilocycles to 5 megacycles.

The NodeJ. B 801 Bridge had an accuracy of + 2 per cent + 0.5 Wf

wifhilc the Model B 601 has an accuracy of + 1 per cent.

*There seeis to be some disagreement on this point (see Wild et al
"Handbook of Triplate Microwave Components", Sanders Associates Inc.,
195, pace 134).
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easurements were made on various components in the overlapping

frequency rang;e. A.,;reement was found to be good. Furzher

experinent with the Model B 801 showed it to be inaccurate

at frequencies above 50 Lre6acycles. Since the Model B 301

has a finer vernier scale, it was deciced to use it at a gre-

quency of 5 mnegacycles and chech the results with the Model

B 601.

Source cf Error.

Several difficnlties were enc.,untered. For the

len:.ths of Stripline used-nar_'ow strip _widths resulted in

low values of capacitances as can be seen by reference o

column L.ve of Table '.-1. Since the accuracy of the Hodel

B 801 is + 2 percent + 0.5, tf andt the nill was not deter-

rinaule to more than 4 1 Itgf, it can be seen that the read-

ing could be 1.5 plif off quite easily. For large values of

capaci.tance (wide stlrips), .- ais error is small, but it be-

comes si,.nificant for narrcw strip width and is believed to

account for at least a part of the deviat-Ion between theoreti-

cal and measured values of Characteristic Impedance. Other

scur~es of error arise from tI , fact that averag, es were

used for t, b, w and the dielectric constant r

5. Step-uTStep Measurement Procedure.

This test set up is shown in ftg 2-8.
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I

(

5mc O8801 COAXIAL COAXIAL STRIP- STRIPLINE E
STRIPLINE TO STRIPLINE SRPSOURCE BRIDGE LINE LINEPLINE

JUNCTION LIN" JUNCTION LIN

545
SCOPE

DETECTOR

Fig 2-3 Test Set Up for Measuremlent of Stri: line Capacity

The oscillator and oscilloscope rere allowed to warmi up. The

bridLe was theL balanced with no load attached. The short

piece of coaxial cable and the coaxial cable -to Stripline

junction having a short section of Stripline attached were

then attached to the bridge and a measurenent made. Finally

the length of Stripline to be measured was attached and a

measurement made. The difference between the two measure-

ments , .. " the capacity of the section of Stripline. Knowing

the length of the measured ection, the per unit capacitance

was obtained. The Characteristic Impedance was then cal-

culated through the use of equation (2-5). The results

are eipressed in tabular foim as Table 2-1 and in graphical

fonj as Fig 2-9.
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TABLE 2-I

IMEASUREMENT OF STRIPLINE CHARACTERISTIC IMPEDANCE

CALCULATED CALCULATED MEASURED MEASURED
STRIP WIDTH CHARACTERISTIC CAPACITANCE per CAPACITANCE per CHARACTERISTIC

(INCHES) IMPEDANCE UNIT LENGTH(MS i/mUNIT LENGTH IPEDANCE
(OHMS) K-Lf /Cm VI.f/cm I(ohms)

0.0121 98.5 0. 553 0.558 101.,
0.0228 79.4 0.693 o.698 79.8
0.0279 74.5 0.734 0.744 75.C

0.0293 73.5 0.,749 0.743 74.4

0.0365 71.0 0. 776 0. 772 71.0

0.0456 62.1 0.885 0.900 61.0

0.0471 o1.2 0.902 O. 8T8 62.7

0.0 51; 58. t' 0.938 0. 2o.0
0.1204 36.2 1.50 1.51 36.2

0.1441i 32.0 1.71 1.78 30.9
0.1462 31.7 1.74 i. 88 29.2
0. 2453 2o.g 2.64 2.47 22.4
0.2947 18.4 2.94 2.74 20.1

0.3-68 16.0 3.41 3.25 17.0

0.3974 14-5 3.76 3.69 14.9
o.4955 11.7 4.71 4.54 12.1

0.5976 9.9 5.54 5.39 10.2

0.7954 7.6 6.34 6.7 8.1
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CHAPTER III

MEASUREMT OF U1 (NOWN STRIPLINE LOADS THROUGH A JUNCTION

A. Impedance.

1. The Problem.

Measturement of Impedance at Microwave frequencies

is commonly performed through the use of a slotted line.

While there are commercially available coaxial and waveguide

slotted lines, none exists for the measurement of Stripline.

Several laboratory models Lave appeared in the litereature

but the expense of manufacture is not Justified in light of

an existing method of measurement utilizing a coaxial slotted

line.

When a coaxial slotted line ic used, the problem

becomes one of measuring through a Junction. The junction

in question of course is the transidion between coaxial line

and the section of Stripline to be measured. The parameters

measured with the slotted line are those on the coaxial side

of the Junction. However, we are interested not in the coaxial

side of the Junction, but in the Stripline side of the Junction.

The question to be answered is then "Knowing the parameters

in the coaxial side of th-e Junction, how can we find the same

parameters in the Stripline side Gf the Junction?" The answer

to this question lies in a conformal transformation between 'he

35
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two sides of the junction. In the sections to follow, this

transformation will be developed and the results used to

measure impedance of an unknown load in Stripline.

2. Transformaotion of the Smith Chart Throu Lossless

27
Junctions.

a. The Smith Chart: Derivation of Loci of Constant

Normalized Resistance and Reactance.

The Smith Chart is a coordinate system repre-

senting reflection coefficient as a complex variable.

Foz a reflection coefficient of constant

amplitude and varying phase, the plot iv a circle centered

at the origin. The angle subtended by the radius vector to

a point on the circle and a reference axis through the origin

of the diagram represents the phase angle of the reflection

coefficient. One complete rotation about the origin repre-

sents a distance of one-half wavelength.

The circle representing unit-amplitude re-

flection contains the entire diagram. The general equation

of circles of constant-amplitude reflection coefficient is

written in the notation of complex variables as

- 2
pp -Ak2  (3-1)

where:

p n Complex reflection coefficient in Plane 1.

a Complex conjugate of p

k - radius when vector p varies in such a manner

as to describe a circle (< 1)
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A few words are necessary concerning "planes"

1 and 2 which will be referred to in this paper. Since any

microwave circuit is one having dist'ibuted parameters, it I.s

not possible to pick up two pair of leads and specify them as j
Input and output ports. tie therefore establsb our input and

output ports by means of planes and attempt to find an equiv-

alent circuit for the microwave configuration between these

planes. We shall define plane 1 as the reference plane on the

Stripline side of the junction and plane 2 as the reference

plane in the coaxial side of the junction. figure 3-1 illus-

trates reference planes 1 and 2.

I I
SL OTTE D LINE J UN TION ! LOAD

PLANE 2 PLANE I

Fig 3-3. Definition of Reference Planes 1 and 2

Voltage Stmding Wave Ratio is related to p

by the expression

V.S.W.Ro Li + Z (3-2)" . -L ,
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The radial line representing reflection

coefficients of constant phase and varying amplitude may be

written in the form I

! (I represents lenath, not (3-3).
the nwrber one) i

If p is to be written in the form

then:

1 , eJ2  (3-5)

The normalized impedance z at any plane I

in a transmission line is related to the reflection co- v
I

efficient at the plane by

Z n (3-6)1 -p i

Now z may be written as I
zu r+J x (3-7) t

where

z = normalized impedance at any plane

r = normalized resistance at any plane -

x n normalized reactance at any plane "

If equation (3-6) has its numerator and denominator

multiplied by (l-a) and the result split into its real and imaginary 4

-

I
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parts, we can identify the real and imaginary parts ofj equation (3-6) with r and x rep ~y~~ result is:

ru , % 3-8)

U (3-9)1
i+ pp -P -

Equation (3--8) may be rearrmned to read

1+rP (3-10)

The general equation of the circle described by the vectorIp measured from the origln, having radius k with center

displaced from~ the origin by the vector a Is

rpet a cicl +o a ic

or :;a i I (3:10) in compared to equation (3-1:)-

a. r ~(3-12) ~9~ ~

Iw~3r

k (3-13)
-y.+r



In a similar manner equation (3-9) may be rearranged to read

.- ( 1 JlX) p- (l /) + -o (3-14)

If x is assumed constant and equation (3-14)

is compared to equation (3-31), we see that (3-11-) represents

a circle for which

a -1 + j/x (3-15)

k 1 l/x (3-16)

Equation (3-10) and (3-14) thus represent the familiar

circles of constunt r and constant x that are found on any

Smith Chart.
b. Transformation of Circles of Constant VS2.,T.R.

It is well known that the reflection coefficients

of any two planes in a transmission line are bilinear functiomo,

related by an equation of the general form

cp+ ca -a

where

/ _ __p - Complex reflection coefficient in Plane 1.

-\ : - - - oa Complex reflection coefficient in Plane 2.

-a,_,c complex conatnts

Utilizin equation (3-17), the relation (3-1) myy be

. . written:

ii



a) . (3-18)

Rearraring equation (3-13) into the form of equation (3-11), 

there results

kic b) -o 124c

From the discussion pertinent to equation (3-11), wo see

that equation (3-19) is a circle displaced from the origin.

If A represents; the vector by which the center of this circle }

is displaced from the origin and K represents the radius, then -.

A. b -k 2 az (3-20)
1 - k2 c

and

K-' A -bf - ) (3-21)1
1 - k c

The conditions for which equation (3-20) and (3-21) are 

solved are: (1) The transforming section Is lossless
and is specified in terms of the reflection

coefficient at one plane under conditions .-

which give a match at the other. -

(2) The reference planes are "correspondins I
planes", i.e. an open circuit at the one

gives an open circuit at the other. 4

I
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According to condition one the trasforming

section is lossless. This implies that with a purely re-

active termination of the line, the modulus of the reflection

coefficient is unity at all planes, i.e.

k n

K- I (3-22)

A 0

Substituting the values (3-22) into equation (3-20) we find

that

b - ac (3-23)

therefore

Condition two states that the reference

planes are chosen such that an open circuit at one plane

gives and open circuit at the other, i.e.

when

I 0-l (3-25)

Usi4 the values (3-25) in equation (3-17) we find that

a +b- c +1 (3-26)

So

a n +

2..~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ____ _ _
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(3) The transforming section is specified in

tems of the reflection at the one plane

under conditions which give a match at thc

other, i.e. the value of a corresponding

to p = 0 is known. The substitution of p - 0

into equation (3-17) gives a - b. Thus b and b

are known constants. The point whose affix

is b is called the iconocenter.

Let us now evaluate equation (3-20) in light

of the two specified conditions. Substitute (3-23) in equation

(3-20) obtaining

S(l - k 2)

A= (3-27)
1 - k2 cj

Solving equation (3-23) for"a"and substituting the result

into equation (3-20), we get

b (1+ c ) c+1 (3-28)
cc

or
1-b

C I b . .

b-l-
ca

then

a - - (3-29)

cc

Multiplying equation (3-28) and (3-29) together and simplifying,

there results:

2(cj) -(+ "s) ca + b' o

which can be factored to yield

(c6 -1) (c; - bb) 0 (3-30)

i4



Therefore

. i (3-31)

or

c; bi(3-32)

I r equation (3-31) is substituted into equation (3-27), the
t.)j

II result is A - b, which is the solution for a a 0. The general

solution for cc is equation (3-32). If equation (3-32) is

substituted itito equation (3-27), we get the desired result

w hich is

Sb (1 1- 2{g

2- (3-33)
j 1 - k bb

lWe now wish to evaluate equation (3-21) which

is repeated here for convenience. It is

- - k2 c (3-21)

E:emiimtion of this equation showe us that aa is the only

unkmown. Remembering that with a purely reactive termination

Km 1 (3- 2)

A-0
Ka 1 '
.kI

we find upon substitution of these values into equation

(3-21) that

a . (3-34)



Since all the parameters of equation (3-21) are now known

we may substitute and simply obtaining as a final result

K.k (1 -b ) (3-35)

1 - k b

,Circles representing constant V.S.W.R. may thus be transferred

from the p -o the a planes by means of equation (3-33) and

(3-35).

ce Transforivtion of Lines of Constant Phase Anles.

Substitution of equation (3-17) into equation

(3-3) Gives the equation of the loci in the a plane of the [
radial lines in the p plane which represent reflectiou co-

efficient of constant phase and varying amplitude.

cc -l (3- 36)( a -+b +aa~

Equation (3-36) may be rearranged into the form of equation

(3-11), yielding the form

o& la b; '~c-i'le- a

+ 14 - .0 0 (3-37) -

It may be shown that the coefficient for a and o are conjugate

terms, so that equation (3-37) represents a circle for which i

:X
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A a- bc (3-38)

and

K2 -AA (3-39)

where K and A are the symbols identified with equation (3-20).

IAt us proceed to put equation (3-38) and (3-39)

into a more usable form. Equation (3-2:3) stated:

a = b/S (3-23)

and relation (3-w6) was

a +b c e 1 (3-26)

Also equation (3-32) was given as

cc =b (3-32)

If equations (3-2S) and (3-32) are substituted into (3-26) and

the result solved for c, we get

b(3-40)

Hence

We recall that equation (3-38) was

la -b6
A -b(3-38)

*1le'-
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IC equation (3-23), (3-'!Q) and (3-41) are substituted in

equation (3-38) for a, c and c respectively we get our

-lesLred result which is

Aw l (i-b,)2 -'A~(*~
Ji(i-b):- -b. (i-br" ji

To put oaTii,(2-3) iitLo Lhe desired f' i, subsuitute

va1lUCz of A, a, c. mid c as Lgiven by equations (3-,-

(5-230), (3-4)-, and rcspecLively and realize that

T'e result is Lhen

2 bZ i -b
K _-

The radial lines representii constant phase a gle in the

p plane may thus be transformed into corresponding circular

ta'-Ls in the a plane by means of equations (3-43) and (3-4,4).

Since the radial lines in the p plane all pass throu h the

urlGin, it follows that the fraily of circles rep'resented by

equation (3-37) all pass throui the iconocerA-r, as may be

ohowri by substituting a a b in equation (3-37).

d. Transformation of Circles of Constant Resistance

and Reactance.

The form of equation (3-6) indicates that the

normalized impedance and reflection coefficient at any plane



are bilinearly related, and since p and a are bilinear

functions, so are z and z, (where zI and z2 are the nonal-

ized impedance at planes 1 and 2 respectively). We may

therefore stateIZ z 1+ i
z2  1 (3-115)z "Z+ 1

ihere and y are, in eneral complex constants.

According to our previously stated conditions

., (followin equation (3-21)), p a 1 when o = 1. Equation

(3-6) is repeated for convenience and is

Lt (3-65), 1-p

Thus ithen p a 1, z w . Since a n 1 when p = 1, it follows

that when zI  , = . This implies that y - 0 in equation

(3-l5). Therefore z, is a linear function of zl, i.e.

z a a z1 + .-

When z is purely ::aginay, z2 is also purely imaginary

since we have assumed the junction to be lossless (condition

1). This implies in equation (3-46) that C9 is real and

if. imaginary.
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Condition three stated that the Junction

wou.'A be characterized by measuring the reflection co-

efficient at plane 2 when plane 1 is matches to its

Characteristic Impedance. We define

12 r1 2 + J
I

(where z1 2 , rl, and c12 are normalized to plane 2)

as the impedance seen from the co,,,ial side of the

junction (plane 2) when tbe Stripline side of the junction

(plane 1) is terminated in its Characteristic Impedance

(z I  1). When z becomes equal to i, equation (3-4,) is

1

mh2  r12  'cx1 2  0' J (-)

Therefore 1
- 12 j

Equation (3-46) may then be written as

<Iz2 r1  z+J 3  (3-49) I

Solving equation (3-49) for zl, we may write

I

.. ... j. ±- .. . . . < - A
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-- - 0.. 2 (3-50)

zz 020112
Z02

where:

z1  M impedance at plane 1

z2  - impedance at plane 2

r12 - Real part of impedance seen at plane 2 with

plane 1 terminated in its Characteristic Impedance

(p = O)

1 -= Imaginary part of impedance seen at plane 2 with

plane 1 terminated in to Characteristic Impedance

(p 0 o)

zSl O Characteristic Impedance - plane 1

Z0 Characteristic Impedance - plane 2

Z02  - Caatrsi meac ln

._ Equation (3-50) shows us that if we know r 1 2

-! and x12 as well as the impedance of the unknown load as seen

on the coaxial side of the junction (plane 2) and the Charac-

teristic Impedance of both sides of the Junction, we may find

the value of the unknown z1 . z1 2 a r1 2 * J x12 is known as

the "iconecenter" and may be found by a graphical procedure

to be described.

-i i ': " L ': ' * ' .. ... . . . . .. Z = ..... ...... ........ ..... .



B. Determination of Unknown Ipedance.

1. The Problem.

The original purpose of this paper was to describq

a measurement technique for the Characteristic Impedance of

Stripline. It was thought that at any given point in the

Stripline, the open circuit and short circuit impedance

Zop 2 and could be measured on the coaxial side of the ,

Junction, transformed to the Stripline side of the Junction

through the use of equationi (-50) to yield z and z

and the relation

701 Vzop 1 -

used to find the Characteristic impedance of the Stripline.

However the author overlooked one important fact; namely

that the answer begs the question. Reference to equation_ -

(3-50) shows that we must known ZOI in addition to z2 ( z.

or in our case) in order to determine 2 ('zo, 1 or s .

While this method is useless for determining Characteristic I
Impedance, it is quite useful in measuring unknown loads in .

general. It is anticipated that such unknown loads may have

to be determined when an investigation is made of various

S'ripline terminations.

In order to use this. method of measurement we mst "

first determine the iconocenter (z12 ). The following section

therefore will concern itself with the graphical determination

of z12 '
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2. Determination of the Iconocenter.

In determining the iconocenter through graphical

construction on the Smith Chart, it is necessary to introduce

28
the concept of the projective chart.

On the Smith Chart, a reflection coefficient or

reflectance p is represented by a point W Just as any complex

iunmber is represented on the Argand diagram. The distance

0W to the origin is the mairiitude r of the reflectance, and

all passive loads are represented by points inside the unit

circle I. If the line al cuts r at points I and J (Fig 3-2)

the ratio

WI 1 +r
= i---r (3-52)

as shown in the pamphlet, is the voltage standing-wave ratio

correaponding to the reflectance p.

The modification that leads to the projective chart

is to represent the reflectance p by the point W with the

same phase angle as W but at a distance r from the origin

given by

- 2r
r -7 2 (3-53)

This makes the ratio kI/J equal to the square of the

voltage standing-wave ratio.
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Fig 3-2 Relation between the representation of a1

reflection coefficient on the Smith Chartj

(W) and on the proJectivo chart ()

If a radial arm carrying a voltage-standing-ae

ratio graduation in decibels is used vith the Smith Chart,-

-the 'Point W viii be in front or the graduation 2x vhen i is

in front of the graduation ~.Plotting points on the pro-

jective chart or transforming back and-forth to the Smith

Chart is therefore very simple.

IA
P.*2
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Fig 3-3 Transformation ra ind P-. Construction of

W from W or of W fro,.

The transform&tion P from W to W can also be obtained 2 3

by projecting W on a sphere with equator from one of its

poles and then projecting orthogonally from the sphere on

the plane of r . Appendix VI shows the derivation of Fig 3-3.

This Justifies the construction shown in this figure. 1,W and

O are perpendicular to the radius OW and I, goes through W.

This can also be used to perform the inverse transformation

1 fromi9tow.
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The circles usually drawn on the Smith Chart

corresponding to constant resistance or reactance and to

constant magnitude or phase of the impedance become on the

projective chart straight l1.nes and ellipses as shown in

Fig 3-4. These could be drawn In advance and t.'sed as on the

Smith and Carter charts to plot impedance measurements taken

for instance, with a bridge.

IMPEDANCE I
ZzRtjX

x x
o0- 0 0

SMITH CHART PROJECTIVE CHART
IMPEDANCE 1

PHAr-S MAGNITUDE

o+  00 0t - -

CARTER CHART PROJECTIVE CHART -

Fig 3-4 Loci on the projective chart and on the Smitb- L1
and Carter Charts of constant resistance R, re- 4.
actance X, impedance magnitude I Z I and impedance

Special notions of distance and wngle that have useful I
interpretations can be introduced on the projective chart.

~: •
' gI-.
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AA

Fig 3-5 Definition and evaluation of the

Hyperbolic Distance (AD) 1
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Given two points, A,B and the intersections I,J

of AB with (Fig 3-4), the quantity

1lOg 10  : (A3-5 1')

uilI be denoted by (AB) and called the lg-Wrbolic distance

between A and B. It will usually be expressed in decibels

as in (3-54.) but can be converted to nepers by substituting

1/2 in, for 10 lOglo.

The quantity (3-51) deserves the name of "distance"

because it satisfies the triangular inequality (uhich shows

that straight liis are geodesics for this particular

measurement systcm) and because it is additive; that is,

when three points, AB,C are on a straight line in this order:

(AB) + (BC) (AC) (3-55)

The hyperbolic distance between the point W and

the center of the chart is

(o). O log L± n 20 log (3-56)
i -r l-r

and can be interpreted as the voltage stauding-wave ratio {
expressed in decibels.

It has been shown in the discussion concerning

equation (3-17) that a lossless transformer may be repre-

sented by the relation
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-o b (3 17)
-a ca - a (-7

We further saw from Se:tion B that circles in the p

plane go over to the a plane as circles under the trans-

formation (3-17). Equation (3-17) is el.o a conformal trans-

formation (angles are preserved). It follows that hyperbolic

distances are also preserved in the following sense. If A,B

are transformed into A',B' while P becomes r', the distance

(AB) defined above is equal. to the distance (A'B') measured

as if r' were the unit circle:

(AB) (3-57)

the subscript indicating with respect to what circle

the distance is measured.

The special transformation (3-17) that preservi the

unit circle (lossless transformations of reflectance for

instance) are represented on the projective chart by projective

transformations. They transform straight lines into straight

lines and as a consequence also leave the hyperbolic distances

and elliptic angles invariant.

Let us now put the fact that straight lines go to

straight lines (in the projective chart) under the trans-

formatioz (3-17) to work for us. The iconocenter is defined

as he impedance seen on the coaxial side of the junction
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(plane 2) when the Stripline side of the junction is

terminated in its Characteristic Impedance. If the Smith

Chart representation is used, the impedance seen at refer-

ence plane I (Stripline side of the junction) will be 2Oi

since the Stripline is terminated in its Characteristic

Impedance. On a normalized basis, Z01 corresponds to the

center of the Smith Chart (p a 0). If A,BC and D are four

equivalent points on the p = 1 circle (corresponding to four

open circuit measurements one eighth electrical wavelength

apart), the diameter AC and BD will pass through the center

of the circle (p = O) as shown in Fig 3-6.

0(

I

Fig 3-6 Reflectance of four open circuits spaced one

eight wavelength apart on the Stripline side

of the junction.
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If AB,C and D are transformed through the junction

and measured on the coaxial side of the lossless junction, we

have the points A',B',CD'. If the projective representation

is used, the straight lines AC and BD go over the straight

lines A'C' and B'C' as shown in Fig 3-7. Since the junction

is lossless, the unit circle is preserved and the points A',

B,C, and DI lie on it.

Fig 3-7 Reflectances of four open circuits spaced one

eight wavelength apart after being transformed

through a lossless junction.

Po int 0' in Fig 3-7 is therefore the point

corresponding to the point 0 in Fig 3-6. However Fig 3-7

is the projective representation of Fig 3-6 and not the Smith

Chart representation. We therefore perform the construction
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shown in Fig 3-3 where 'i, - 0' and is known as the "crossover" I

point. The result is shown as Fig 3-8. The point W is the

iconocenter i.e. the impedance in plane 2 corresponding to

a matched load in plane 1.

- -- .=

I S.. 
-

D <

It I

RIg 3-8 Transformation from the Projective to [

Smith Chart representation.

3. An Example Illustrating the Technique.

IIn order to clarify the actual measurement,

procedure, let us work an example. The test setup is shown ,

in Fig 3 9. The first step is to establish a reference plane

according to condition 2 assumed in the solution of the .pre-

ceeding equations. It was decided that the reference plane 1'"

I.F:
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STRIPLINE
3 KM COAIA COAXIAL LOSSLESS i .. UNKNOWN

SIGNAL GEN.,LTEDLN LINE JUNCTION LOAD

; .. . ... OPEN "

I CIRCUITS
X APART

1 8

FtG 3-9 Test Setup for Me-asurement of an Unknoini f.ad

on the Stripline side of the junction would be established

directly to the right of the junction. Accordingly the junction

was attached to the coaxial cable on the right of the dctted

line and the position of the first voltage maximum was recorded.

IA section of Stripline with known Characteristic Impedance of

arbitrary length and open circuited on the load end was then

attached to the junction. The VSWR and position of the first

maximum were noted. It was next desired to remove one-eight

electrical wavelength from the Stripline. The wavelength in

Stripline is related to the wavelength in free space by

\f;fI3-58)

*1
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where

X Stripline wavelength

f = Free Space wavelength

r * Dielectric constant of Stripline

The free space wavelength at 3 kmc is 10 centimeters.

Teflon-Fibera-lass (GB-1LhT) was the dielectric used. This

material has a dielectric constant of 2.6. We therefore find

from equation (3-58) that x5/3 = 0.305 inch. This length was

then removed from the load end of the Stripline and another

measurement of VSWR and the position of the first voltage

maximum made. By repeating the procedure of removing Xs/8

three times and measuring the VSWR and the position of the

first voltage maximum, the four points A',B',C' and D' are

obtained (one point was obtained from the measurement made

before any Stripline was removed). The results are shown in

Table 3-1.

From Table 3-1, it is first uecessary to determine

the wavelength in the slotted line. This is done by sub- 4'
tracting minima from their corresponding maxima and averaging

the results of all readings. Know-ing that the difference be- ,

tween any mximnu and minimum is one fourth vavelength, we

can find the wavelength in the coaxial line. The position

of each maximum is then subtracted from the reference position. U1.

i°

4,.,t ''.



26

TABLE 3 -1

measurements Relevant to the Determination of an

unknown Load as Measured Through a Junction

Reference Position on Slotted Line - 373.9

M~aximium VSW Minimum

350.6 39.2 3295.9

Remove 0.305 inch of StriplineI387 .2 60 363.8
Remove 0-305 inch of' Stripline

38561 353.9,I Remove 0.305 inch of Stripline

366.8 4.7 344h.3
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This difference is then expressed as a percentage of the

slotted line wavelength. If the position of a voltage

maximum is numerically greater than that of the position

of the reference, the maximmu has shifted toward the load;

if it is less the maximum has shifted toward the generator.

The results are shown as Table 3-2.

It has been assumed that the Junction is lossless.

This means that the VSWR on the coaial side of the Junction

can be showu to be infinite or that a - 1 since

-VSWR-I

orVSW (3-59)
VSWR+l

Teble 3-1 shows that the measured standing wave ratios were

not Ifinite. Table 3-3 shows how good an approximation we

have to the ideal case (0a 1).

Reference to the reflection coefficient scale of

Fig 3-10shows that the approximation is not bad. We will msZe

the assumption that a - i for all measurements to aVoid the, "

more difficult problem of having to consider a lousy ,Jun6ctiO6n.

The points of Table 3-2 are plqted-on -Fig S3-10 -using

R a as the reference point. We use -this reference be e ause

our measurement reference Was a open circuit correspondinh to.

a voltage maximum. Since a voltage p*iaxm- occurs\ at a cur nt

minimum, a resistive mtximum is obtained. As discussed .priouis ly

r"

-~ -- -
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TABLE 3-2

Location of Points A',Bt,C#,Dt

with Respect to the leference Plane

Shift Direction

i. o.:286 xtoward generator112. 0.084 xtoward load
3. 0.00)05 X toward generator

4. o.1221.. x. toward generator

TABLE 3-3

dComparison of 'Measured VSWR with the 'Ideal. value

VSWI0

39.2 0.948

6o 0.97

61 0.97

47 0.96
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the points A' and C' are Joined with a straight line

across B' and D'. This intersection yields the point 0'.

The construction of Fig 3-3 is then used to obtain the

point W, which is the iconocenter. From Fig 3-10 we see

that 4
I

W z12  1.4 + j 0.2 (3-60) 1
Let us now a ttach the unlznown load to the "

Stripline and measure the VSWR and position of the voltage K

m::-nimm. The VTIR is observed to be 10 while the position

of the first voltage maximum is at 370.0 centimeters. From If

equation (3-59), a = 0.82 while the voltage maximum has

shifted 0.09 wavelengths or G .8 degrees toward the generator. 4:.i"

A shift toward the generator is negative accordin to standard

transmission ine theory. Hence normalized, to Z02 J
z2 -0.82 L. 64.8 A

m0.34 - j 0.74 V ,

Equation (3-48) is now used to traneforM Z2, back tbrugh

the junction. It is

k02 4~02

l >12
Z0 2



NAME

SMITH CH

68

It is known that the Characteristic Impedance of the

Stripline is 50 ohms while that of the coaxial cable

is 51 ohms. r12 and 'L2 are the real and imaginary parts

of the iconocenter and are given by equation (3-60). In-

serting those values in equation (3-50) we get

0.34i8 - J o.74 .j 0..2
zI 51 51

50 . 4 I

1

12.7 - 34.2

It will of course be noted that it is not necessary to 1

IMow 00 since it drops out of the equation. It was 0.

put in merely to show that z and z2 are both noni-alized

to Z0 2 .

C. Conclusions:

It has been shown that it is possible to measure

an arbitrary anknown impedance through a lossless junction

thereby allowing the use of' an existing coaxial slotted

line to determine the value of Stripline Loads. We can not

however determine the Characteristic Impedance of the Strip-

line by this method since our result will be a single equation

in two un:nowns.

i l" ,

i0

I .11' :;i
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CHAPTE IV

DETEfIATION OF STRIPLfE ATTMMATION

A. History of the Problem.

I. Current Distribution on the Conductors.

Before Stripline attenuation can be intelligently

discussed a fev words must be said concernina the distribution

of current in Stripline.

Many of the people who have worked on the

Characteristic InDpcdance of this line have, in conjunction

wit). that work, carried out a confonnal uapping of the strip-

line Gecinot0r into some siimler geometry. One by-product of

Each calculations is the current distribution of the inner

and outer conductors. The rigorous conformal mapping carried

out by Oliner, md illustrated in Fig 4-1, is therefore

meant to be typical of the work of a number of people.

The mapping outlined in Fig 4-1 procedes by firat

mappin the upper half region (b) of the Stripline shown in

(a) onto the upper half plane (c), by means of a tanh function.

The rectangle (d) is then also mapped onto the upper. half plane

(c), employing a sn function, and the mappl.xgo are compared in

ord&. co determine the overall mapping )rom (b) 1o (d). By

taking appropriate derivatives, one finds the followng f't'zctio al

71



dependence for the current distribution on the ground planes

in terms of the notation of Fig 4-1 (b):

~~I(x,b/2) . . . . .. . .(4-1)

1 + k, sinh2 (it c/b)

I where

k z tanh (it v/l b), 100 = 1 - k. (4-2)

The current on the center strip conductor is similarly

shown to be

I(x,o) Ow. _, _ .. .. 4 3

4 i - (k'2/1;2) sinh2 (3 x/b)

where k and k' are given by Fig 4-2.

It is P en from (4-I) that the current on the

outer conductors in a maximum at the midplane of the cross-

section, and decreased monotonically away from this point

on either side. From (4-3), on the other hand, one notes that

the current on the inner strip conductor is a minimum at the

If
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AyA

• 
A

b /77/

b ,..W 2_. K W

(b) (d)

Fig 4-1 Rigorous Conformal Mapping of Stripline Geometry

midplane and becomes divergent at the strip edges (as one"

would expect). The actual variations given by (4-1) and 04-3) i

have a relatively simple form.

Experimental confirmation of the validity of relation

I

(1) in a practical situation is afforded by Fig 4-2 which

presents a comparison, of the theoretical values predicted by

(4-1) with experimental data taken at the Hughes Aircraft

Company 3 4  As seen, the theoretical values agree quite weln

with the measurements. Fig 4-2 also serves to inutrate therapid decay encountered as one moves tranversely away from

the center strip; at a distante awty from the strip equal to

the strip width the square of the field intensity is 27 db

down from its maximum value.

?i
(
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DITANCE FROM CENTER (Relative to strip width

Fig 4-~2 - Field or Current Distributions Across

Outer Conductor Surf'ace

2. Attenuation Constant.

The evaluation of the attenuation constant is generally

a rather prosaic task, once the appropriate current distributions

ane known. If' one employs the current distribution (4i-1), and

perfor~s the necessary integrations, one finds for the attenuation

constant due to the loss in the outer conductors only.

1 outer -1 I

plates k b X I(k) K(k I k

where k and kt are defined in 4i-2,. K(k) is the complete elliptic

integralof the first kind of modulus k, I is the wavelength of

the line, b is the ground plane spacing: and 8 is the conductor
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skin depth. When similar integrations are performed for the
inner conductor, using current distribution (4-3), a divergent

result is obtained for the attenuation constant due to loss

in the inner conductor alone. This divergence is due to the "

divergence in the current distribution at the sides of the

inner strip conductor for an inner conductor of finite thick-

ness (rectangular shape) the current distribution at the

edges possesses a divergence of lower order and thus permits

a finite result for the attenuation constant.

In the course of his work on Characteristic

10Impedance, Pease had determined the current distributions
I

on the inner and outer conductors in the low impedance

range when the inner conductor is of finite thickness.

Employing these current distributions in the computation

of attenuation constant, Pease36 obtained explicit expressions

valid for both inner and outer conductors. While the results

are apprg:timate, they are estimated to be accurate to within

i' for Z0 < 75 ohms. The contributions due to the inner and

outer conductors are given separately; the result for the

outer conductors alone is nummerically in very close agree-

ment with (4-4) when the itner conductor thickness is small.

While these attenuation constant results are in explicit form,

they require the insertion of a quantity related to the

Characteristic Impedance which must be determined via a [I-

transcendental relation. The form is definitely computable

4-I

ifr
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but more involved than that of (4-4). It is suggested,

therefore, if accurate results are desired for lines in

the low impedance range with small thickness inner conductors,

to employ the formulation of Pease for the inner conductor
4

contributions and expression (4-4) for the contributions of

the outer conductors.

More recently, Cohn37 has evaluated cxpressions

for the attenuation constant which are valid over the whole

range of Characteristic Impedances, but which are not as

accurate as (4-4) or those of Pease. Cohn's approximate

results are based on a general formula for the computation of

attenuation constants published by Wheeler. The procedure

involves the evaluation of the derivatives of the Characteristic

Impedance with respect to each of the line dimensions; in order

to obtain results in reasonably simple form Cohn employed simple,

approximate formulas for the Characteristic Impedance. He

obtains separate results for the high and low impedance ranges,

and the contributions from the inner and outer conductors are

not separately determined. Although the results from the high

and low impedance ranges differ by 4 in the overlap reeion,

they are recommended which approximate answers are sufficient.

B. Recommended Approach.

Cohn's results seem to be most widely accepted in the

literature and are expressed in graphical form for convenience.
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The following dicseration will therefore foV2ow Cohn although

it will be considerably more complete than tbht given by Cohn.
C. Derivation of an expressiton for Srtpline Attenuation. •

_. . ?

In general, two types of losses occur in a transmission

line. These are dissipation in the ccnductors and dissipation

in the dielectric medium filling the line. In the usual case

these losses are small enough to permit the total attenuation

to be expressed as the s"'m of each type of attenuation ccoputed

That is:

aa +a
c d -

where t ae

total attenuation per unit length

acm conductor attenuation per unit length.,

a ds dielectric attenuation per unit length

1. Dielectric Attenuation.

Let us first consider the dielectric attenuation,,

ad' It was shown in Appendix II that jJ

Jk, + , U "7 (A2-56)

Frthermore if equations (A2-22) through (A2-2) of Appendix 1I

are writtea in vector notation (assuming conducti ity # 0),

there results

Z.4
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T' J ( +

Now

T +j

:41 equation (4-9) x, is the attenuation constant and P is the

phase constant. We wish to find the attenuation constant a.

To do so, we must divide equation (4-8) into its Real and

Imaginary parts. We therefore proceed as follows.

a (+

Expanding equation (4-10) and separating Real and

Imaginary Parts, we find the Real part to be

In order to solve equation (4-i) for caanother equation isI needed. Equation ( .-8) may be rearranged to read

NOW

4r 2 2 ~ 2 2 2 2
-(W 4+(A) a i)A 1 (4-13)

.__ __ __ __ __ __ _ _ _ _



n!
79 i

Solving equations (4-12) and (4-13) simultaneously for

a there results

a / e 1l + 2 2 ' _1 (4-1I4)

The quantity a/ca in equation (4-14) is defined as the loss

tangent (tan b).

For the dielectric nuiterials of interest 0/wi <-! 

E]xanding the term 1 + ]/

w

in equation (4-14) in a binominal series, we get

-. -

[ ( 2 f2- -27°
1 + + 1/8 --... (4-15)

Since tan 5 < < I, we may neglect al. terms after the. second

term in equmtion (4-15). Substituting equation (4-15) into

equation (4-14), we obtain the result

a tan'B -nepers/unit length, (4-16)

Equation (4-i6) may be simplified by realizing that I

A..

3 ~ (417
0 :0 40 0
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where:

c - velocity light

X free space wavelength
0

o0 free space permeability

C 0 free space permittivity

Equation (4-17) can be used to simplify (4-16) to read

-- tan b nepers/unit length (4-18)

A convenient working form of equation (4-16) is

27.3 'C tan 5
7. r -db/unit length (4-19)

?.o

where:

o  free space wavelength

r relative dielect;ric constant

tan 8 a loss tangent of the dielectric

2. Conductor Attenuation.

We begin our investigation of ionductor losses by

rewriting equation (4-6) which was

V x.H.(o+J e)E (H-6)j



Equation (4-6) may be further simplified, since the

displacement current will Lever be appreciable in any

reasonably good conductor, even at the highest. radio

frequencies, The terms to be c-ompared in equation (4-6)

are a and aw, The precise values of c for conductorS are

not known, yet moot indications show that range of di-

electric constants is much the same for conductors -as

for dielectrics. For p.latinum, a relatively poor

conduictor, the term we becomes ecjuall to oI at abot I
1.5 x lo1 cps., if the dielectric cona'tsnt is taken as

ten times that of free space. This frequezcy is in the

range of ultraviolet light. Consequently, for all but-

the poorest conductors (such as e6arth) the dgilplacement

current termi is completely negliribae dompared to the

conduction current at awy frequency. Assuming v > > w c,

equation (4-6) simplifies to:

7 x 11 E Q-O

Taken the curl of both sides of (4,420)

But, there is a vector identity which atates '-

V z 7 x Ha R)-V2 H (4-22)

-'-
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Utilizing eqaation (4-22) equation (4-21) becomes:

1 ( 1q) V2 H a 7 x E (4-23)

Now Ma-well's 2nd and 3rd Laws were derived in Appendix II

end were in vector form

V x E = - a (A,2-10 thru A2-12)

and

\7 B =V H 0I (A2-38)

Using these two laws in equation (,- 3), there results

,~ (4-.24)

This equation for the variation of If in a conductor

is in the f orm of a staxndard differential equcition similar to

Laplaces equation, in the wave equation. The equation is

often called the skin eftfect or distribution equation cnd moy

also be derived in terms of E, yielding

0'E
a' . (4'25)

Since i = a E, equation (4-a5) may also be written in terms

of current density (i).

a t (4-26)
40'
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If sinusoidal distribution is assumed, equations (4-24)

thru (4-26) become

H -1 j w a H (4-27)

V E j w E (4-28)

Si =j W i (4-29)

These equations give the relation between space

and time derivatives of magnetic ftl1d, electric field, or

current density at any point in a conductor.

Let us now consider the case of a plane conductor

with current flow in the z direction, x noral to the surface

and no variations in the y and z directions. Fig 4-3

illustrates this concept. If equation (4-29) is e:panded in

Cartesian coordinates, there results:

1

1/ /9

/ /I / lI
St/Z

/ I' z / /

I / ,I
.I , I ' 

.

i i

Fig 4-3- Current Flow 1,n a Plane Conductor



( 2 ___ 2 N
+ + 1 ~UOL (4-30)

3 x 3Y/

However,. we have stated that there are no variations in the

y or z directions thus simplifying eqtu,.tion (4-30) to

ozz

a-T i z

where

Ir jw~ C

or

T = i + J) %F T fPa

The solution to equation (i.-3J.) is of the form

-CX +I X (-2
, iz= C1  -Ic + C. e (+- )

Current density would increase to the impossible value of

infinity at x - unless C2 is zero. C nay be written as

the current density at the surface if we let i i when

x o. Then

-.rxIz o e (-

I
"I

ii,
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Define

1 (4-.34~)

Then utilizing equation (4. 34) in the definition of T, there

results

1+ j

Using equation (4-35), equation (4-33) may be rewritten as:

ii e - ( I + J ) X/3
z 0

i-ie-

i i ° e x/ e (4-36)
0

Froj the form of equation (4-36) it is apparent that

magnitude of current decreases exponentially with penetration

into the conductor, and 5 has significance as the depth at

which current density to l/e (about 36.9 per cent) of its

value at the surface. The phase of current also changes with

increasing depth into the conductor according to the factor

e -jx/ .

To find the total current (I) flowing in the plane

conductor, we must integrate the current density over a

width w and to an infinite depth.

I w i (4-37)

Using equation (4-36) for i ,we get
zT
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i wj e(1 )' C/%x
0

- j(4 -38

The voltage E on the surface along the length of this

conductor is obtained from the current density (yL) and

the volum resistivity (o).

E -1°0 z P (4 -39)

The "internal impedance" or "surface iipeda ce" is

computed fror the ratio ol" the voltage E given by equation
(-3) and the current I as given by equation (4-38)

Z=E - ( + J) - :..o

fRecalling that

4 -4 ,t F

equation (4-40) becomes:I (I+j4WVII f
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Dividing Z into its Real and Imaginary Parts results in

R a x U Z/w 4 - f.p (4-5)

Let us now define the resistance of a surface of unit

length and width and of depth 5 by

Es P/5(

Equation (4-46) may be simplified by u 4ng the definition

of 3 as given in equation (4-34). The resultant expression

is:*

R p A t f (t.-47)

Comparing equations (4-45) and (4-47), we see that

R = Zw R-)

The internal inductance can be calculated from equations

(4-45) and (4-34). After rearrangement of terms, there

results

L u x/W - z/w (g 5/2) (4-49)

S

V



This is the inductance of a layer of conductive material

having a thickness of 8/2, one half of the depth of

penetration. This merely means that the mean depth of

the current is one half the thickness of the conducting

14 layer.

Some inductance formulas carry the assumption that

the current travels in a thin sheet on the surface of the

conductor, as if the resistivity were zero. Such assumptions

are usual for transmission lines, wave guides, cavity resonators,

and piston attenuations. Such formulas can be corrected for

the depth of penetration by assuming that the current sheet

is at depth 6/2 from the surface. This is the same as assuming

that the surface of the conductor recedes by the a.ount

!2
0

The second factor has an effect only if the conductive material

has a permeability V differing from that of space goo The same

correction is applicable to shielding partitions, regarding

their effect on the inductance of near-by circuits.

There is sometimes a 4uestion which surface of a conductor

will carry the current. The rule is, that the current follows

the path of least impedance. Since the impedance is mainly

inductive reactance, in the common cases, the current tends

to follow the path of least inductance. In a ring, for example,

'4 __ _ _ __ _ _ __ r--~
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the current density is greater on the inner surface. In

a coa:-ial line, the current flows one way on the outer

surface of the inner conductor and returns on the inner

surface of the outer conductor.

In determining whether the thichness is much greater

than the depth of penetration, the effective thickmess

corresponds to the depth of a hrothctical line. In a

soym,.etrical conductor with penetratlon Jfrow both sides, as

in a strip or a vrire, the eiTe ie thicluess is the depth

to the center of the conductor. In a shielding partition

with penetation into the surface on one side and vith open

space on the other side, the effective thickless is the

actual. thicness. If' The offective thichness exceeds titice

the depth of a penetrationr, the accuracy of the above

impedance formulas is sufficient for m.,ost purposes, within

tLo per cent of a plane surface.

The "increental-inductance rule" is a formla uhich V
,ives the effective resistance caused by the skin effect,

but is based entirely on inductance computations. Its

Great value lies in its general validity for all metal objects

in which the current and magnetic intensity are gonerned by

the skin effect. In other ords, the thickness and the radius

of curvature of exposed metal surfaces must be much greater

than the depth of penetration, say at least twice as great.

It is equally applicable to current conductors,shields, and

iron cores.

K ,



This rule is generalization of (4-48) which states

that the surface resistance R is equal to the internal

reactance X as governed by the s::in effect. The internal

reactance is the reactance of the internal inductance L

in (4-49). This inductance is the increment of the total

inductance which is caused by the penetration of raLmnctic

flwu under the conductive surface. This change of inductance

is the see as vould be caused by the surface recedin to
the depth given in (4'-50). Startig - ith a hnowledge of

this depth, the reverse process of computation gives the

increr..enr of inductance caused by the penetration, aad from

that uhe effective resistance as g;overned by the shin effect.

The incremental-inductan-ce rule is stated, that the

effective resistance in a circuit is equal to the change

of reactance caused by the penetration of magnetic flux

into raetal o bjects. It is valid for all exposed l.jetal

surfaces which have thichiiess and radius of curvature much

Greater -than the depth of penetration, say at least twice

as 'great.

The appl _ation of the incremental-inductance rule

involves the following steps:

(a) Select the circuit in which the effective

resistaz.ce is to be evaluated, and identify the

e.posed metal surfaces in which the skin effect t
is prevalent.

I
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(b) Compute the rate of change of inductance of

this circuit with recession of each of the

metal surfaces, L0/6x, assuming zero depth

of penetration!

(c) Note that the increment of inductance caused

by penetration into each surface is

L
5 0

(d) Comute the effective resistance contributed

by each surface.

6 L

= 1 - L° ohms ()-52)

For a surface carrying the current of the circuit, this is

identical with C For the effect of near-by metal

objects, such as shields, this formula is easily applied in I
many practical cases. It is most useful :i cases of non-

unifuirm current distribution, which otherwise would require

integrations.

A second-order approximation is secured if )L-/x

is computed asswuning that the surface is below the

actual surface by the amount given in (4-50). ,

F.



We ruust now develop an expression for conductor

attenuation in terms of R and the Characteristic

Inredmace Zo . In the initial discussion of the theo'y

o Stripline, we saw that since a ON mode is Generated,

the e:,ressions for transmission lineo hold. One of t1-a

most basic parameters is the propagation constant.

r 4 = 4 R + j a) L) (G + ijw C) (4-53)

In the constriction of v]li des.[ied transmission lines,

it is roud that R < - L ad G -,< (j) C. Using, these

apprcximations, ire can therefore .rite our propagation

constant as a Taylor's Series and consider only the first

several terrs.

4 -=L +(R)/2 + 2 L "(4-54)

and

Then

j a 4-z sn/2 4'67L + G/2 -,rLT +Jw 4qL [1 -G.-

Since

Ta c +jp (4-56)



the attenuation constant a may be found by taking thc RealC

part of equation (4-55) resulting in

% R/2 CJ/L + G/2 4L /C neper/m (1 57)

From transmission line theory, we Imow that

Substituting equation (4-5O) into equation (4-.57) we Get

R GZoC~ ="---2 + --- epcrslm ( "59)

Let us exarmine equation (4-5.) more closely. G is the shunt

conductance between ccnductors. With the common dielectrics

in use, it is snvll enough to be neG.eted. Using this

approximation, equation (b.-53) becomes:

c: IV 2Z nepers/m (4-60) I

0

Equation ( -60) is not in a convenient working form

and must therefore be modified further. In Chapter II of

this report were Given the relations

and

o V
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Eqzatin6 equations (2-1) and (2-3) and solving for L, we (,et

z0
L (4 ,lV

An e:.pression for velcity of propagation (v) as coipared

to tihe velocity of lit (c) was also'given in Chapter II.

!It wcns

r

c

Ii' enuation (-..C) is used in equation (4-52), there results

s r .-63)

R z
i s r 0=

I c

But lO8

; o~ c -4 A x 10 7  8 7.

0 ~ t~O x x 108  376.7

4.



so that

R 6 z
S r 0(4 64)
376.7 (

if equation (h-64) is now used in equation (4-60) we Get

a more desiroble foziv for the attenuation constant.

~= s nepers/cm (4i-65)S 753.2 7 . n

where x has been chL..ged to n to conform to Cohn's notation I
of distance perpcndicula to the conductor surface.

z
e uat no,. evaluate the tem o ".n equation (4-S5).

Considcer the cross section of Stripline as shon in Fi- 4.,-4.

Fie 4-h - Cross Section of Stripline



1 n is perpendicular to the current carrying conductors.

J We must therefore consider• the inner surfaces of the two

groind planes and the 2our surfaces of the center strip. A

change 6 n inwardly nonna], to the ground planes requires a

change & b = 2 5 n in around plane spacing. Similarily, in

r the strip, the necessary changes in dimension. are ir = - P . n

and t = - 2 5 n. The total change (total differential) for a

Sunifona change in F" n is therefore:

' o ,. o " "" (4-66)

% - 5o 4 .-_ _ +_ _ _,_._ _ _ _ -'

Substitutii the values Ior t, . and e. t as given above

in equation (.-to), "here results

)0 0 0b (-67)

W.hen equation (4-67) is incorporated into equar1tion ();-5),

the desired expression foK the attenuation constant 'c

requts and is

( z- C)Z z
C/ o 0 0 nep ers/m (4-68 )
c 3766 Z 77 1 W



a. Wide St rip case.

Equation (4-68) will first be evaluated. for

the wide strip case (w/b - t > 0.35) using equation (2-9)

which is

Zoj 0l, ( 2-9 )

4 (-o 0.0 T"

I- t.he partial de'iva~ives ofi equa-tivon (%.-u) cre eye.luatd

usi14, equation (:2-9), the fol].oin, resu].ts are o1htaincd: 'I

'" ~ ~ Il " o /.b (47 "

, -.1 93 4. C,

C) - -4 ro ( W,1 + .-'° (4-71)94.15 bL~ 3. t.i/") 0r -0

o C

"?i t 0.85 4-1
(1 t/ r

I-P equations (k-6 ) throuJI (-71) are substituted into

equation (4-68), there results



6 Z r

a Er z o + 2 w/bc (376.6)2 b L 1 -1 -t/b

+ bCf' f'- L + + 7 epers/m

o.0885 er b W t

The partial derivatives of C' may be evaluted through the

use of equation (2-J0) which was

0.0885 c r
C l t7In 1-t7b + 1

I, In i'/c- (2-10)

MaLe the substitution

in equction (.-1i0). The result is

0.0885 r ) n ]
- - 2 x )i(n(,[ . , + 1) -(x - ill z (x ) (!"

Tal.J.ng the partial derivative of equation (h-7!i) with respect

to ::, we find that

cf I 0.08 3 xI x r 1 (4-75)

7-x-



9$'i
Now

xI
x -~ (lit ) . (4-76) 1

since x is not a iAmction of w.

Also

_t (4-77)
b (1 - t/h )

and

There fore

SCc' C f

0888

r~ i x +tl(In x --- -f • o - (4..7o)

abnd

C C

f _ _ X. _ _ _ _ _
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Cf' C f'

"~~ x6-- a t-

0.088 50"88 r < x +i 1

b (I -/b

If equations (4-79) through (:-81) are substituted into

equation (4-72), we see that

8 r 0 ' 1 + tw/
(376.6) 2 b [1- t/b 1 t/)

1 -

1 l+ t)( ) ) in 1 "7t/b \\
+l _ /  .. j nepers/anit length

2 - t/ -

For copper 11 = 0.25 x 1 - .  oh-3.!square

I.le al.so wish our result in decibels jer unit length rather

thran in nepers per uit length. Remeitfbering thatb one neper

equals 3.68 decibels and using R for copper in equation (4-82)

we obtain the final resul.t, which is
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2.02 x o-O 4 4e z
kwc rt x

c b

[ b + b -+ 1 in -) 3.it/b( .4-83)

t/ t
:quatioi ():,-3,) is valid int the sare raadc a- v/b -t > 0.35.

The ten, i r Zo) is detenined as a uncticn o-: the cross

sec tional diiensicns. The teni Cc is e:pressed in db/unit 
C

lendth where the unrit !en1,th is that used to r.easure b. For

e:w.m'~Jle if b is in inches, C', is db/inch. If the conducting

surface is other than co," ,, the result should be scaled by

the ratio of the surface resistivity of this metal to that

cf co-pper.

b. Narrow Strip case.

Let us nor evaluate equation ( z.-r) fr narrow

,tridohs. it was showm in Chapter II that for v/b -t, <0.35

the Characteristic Irrpedance could be expressed by eluation (-I].)

,Ihich is

60Zo =--- n L- elus (-])i.0 do

r/
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To evaluate equation (4-68) which is

aS r o o nepers/m (4-6)'c= 376.6 Zo  t

6 z z 3z
o 0 0 . ,.,
0 0 and 0* .us be evaluatCed.

Utilizing cquaLiou (.-ii), wc see that

9 0 6o , : ,1~--2--- t:-,

r

S- 3d
0o 0 0.0 0• .,.-.-- -- •- (' .-35)

-W fl(
r 0]

oZ z ( 60 do 4 -6 )
i~ ~ o ' o

Incorporating equation (4-84) thru equation (4i.-86) into

equation (4-68), there results

+i 6- d- + nepers/unit L.cihti (4-87)c a Z b L d



1-4

1.1ahIing the substitutions Rs = 8.25 x 10o34 nad
sI

one neper = 8.686 db, equation (i.-88) results and is

0.018402 fT7c 6 (d 0  3 d 0 ~
8 = -b I I + (Io db/tuit length

N(.cr z o) b (

Eqiaation (4-88) is valid for - 0.35 and t < 0.25.

A].though the equation relating do, w and t is

knom, it is an Ir.qlicit function of the variables and to

comple:: to permit derivation 0o' exac formulas for the partial

derivatives. h ver, a seL ol' -rive place values of do/d,

versus d"/d t were available, amd permitted a precise nur erical

cvealu'it.on o_' thee deriva*ives. A plot of ( du/* it + " do/o t)

as a function of the strip cross section ratio iI given in FiG !-5.

Values 2roU this curve way be used in equation (4-83) to obtwin

the at'Leuation per uiit icn nth of' narrow strip lines.

For d"/d' smal.., wrhere "d"" is the smnalle

and "d' the larger of the two dimensions "w" and "t", an

al)p~o;::inate forrala for d c:.sts. 9

, I

These tere coraputed in 1950 by C. Plammer of Staiford

Research Institute.
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0F d"(4% kd 1  i1 --- l/2 1 + -W 1 + I (4-89)

Equaion (4-89) is accurate ior 0' : 0.06. It was

found by Cohn3  that an inprovement occurs in equation L

(4t-89) if it is modified to read

d( ° [ d" 2
+ 0.510 ( ()J(90)

With this modification, equation (4-90) is extremely accurate

for d"/dt up to at least 0..1.

Differentiation of equation (4-90) yields

do dod + 6 do l/2 + .669d"/d'

0.255 (d"/dl) 2 + 1/2 x in 4 9 , 'le (.91) I;

Inserting the results of equation (4-92)

into equation (4-88) gives the final result which is:

.... K i'.



M

10

%[- z) bb
r 0

- 0.255 , + a/2 it LI 4n 7 ' (4-92)

Equation (4-92) is applicable for w/b -t < 0.35, t/b <0.25

mid either ,/b < 0.11 or w/t < 0.11.

5. Attenuation GrapWhs.

It is of' -onsiderablc interest to cowpare the

f or mulas for the wide aond narrow strip cases in the vicinity

of the transition point /(b-t) a 0.35. Fig 4-6 shows curves

corputed from equations (4-03) cad (4-92) for the £ypical case

of t/b - 0.01. It is seen that the cu-vres show an acpproxiniate

agreement near w/(b-t) a 0.35, but differ by about eight per

cent. This discrepany "'s reasonable since the two a'tenuation

I formulas utilize the derivativec of two approximate Characteristic

Iiupedance formulas, and, although the latter agree very closely,

their errors will necessarily show up most strongly in their

derivatives. A reasonable trancition between the two

attenuation curves is shown in Fig 4-6. Tt is reasonable to
mI

believe that the resulting coDmposite curve is within a few per

cent of the true one.

The above process has been carried out for t/b

ratios from 0.001 to 0.1. Equations (4-83) and (4-88) and

(4-92) were used in their respective ranges of -alidity. In
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01.011402 .4T r l++069d
,c

- 0.255 + 1/2 L d I/d, s -o. s \ + za. , . aia"(4-92)

Equation (4-92) is applicable for w/ -t <0.35, t/b <0.25

mid either l/b< 0.11 or w/t < 0.11.

3. A.tenuation raphs.

It is of considerable interest to cor, pere the

foriulas for the wide a :d narrowr strip cases in the vicinity

of the transition point w/(b-t) a 0.35. Fia 4-6 shoirs curves

cenrputed from equations (4-03) and (4- 2) for the typical case

of t/b = 0.01. It is seen that "he cur-ves show an aPro;imate

agreement near w/(b-t) = 0.35, but differ by about eight per

cent. This discrepaiy iz reasonable since the two attenuation

formulas utilizc the derivatives oA. two approximate Characteristic

..pedance formulas, and, although the latter agree very closely,

their errors will necessarily show up most strongly in their

derivatives. A reasonable transition between the two

attenuation curves is sho-m in Fie 4-6. It is reasonable to

believe that the resultiu conrosite curve is within a few per

cent of the true one.

The above process has been carried out for t/b

ratios from 0.001 to 0.1. Equations (4-83) and (4-88) and

<i (4-92) were used in their respective ranges of validity. In
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all cases the curves for narrow and wide strips agree at

w/(b-t) . 0.35 within 10%. The family of composite curves

is given in Fig 4-7, as a function of Zo and various values

of t/b. It is seem that minimum attenuation is approached

__ at Z which corresponds to the case of an infinite parallel-

plane transmission line of spacing (b-t)/2. if field fringing

did not occur, with consequent non-uniformity of current dis-

tribution, the attenuation would be independent of strip width

and Characteristic Impedance. The effect of this current non-
uniformity is therefore quite large in the useful range of

Characteristic Iwpedance.

Fig 4-7 applies to copper conductori For other conductors

the attenuAtIon should be scaled proportional to Rs . The ordin-

ate parameter is a b/ f.kic e-r in db(1c) "I /2. Note that this

gives C directly in db per inch at a frequency of 1 lmc whenc

Cr - 1 and b n 1 in. The total attenuation when a dielectric

material fills the line is given by

270 4 C tan 5U - a + c./unit length (4-93)xo

,4. Measurement of Attenuation. .U

In order to check the correlation between theoretical and

measured values of attenuation several stripline spirals were

built and evaluated. A spiral was used since it was felt that

this was the only practical wayr to get a representative length *
0

of Stripline in a reasonable amount of space. All spirals had 0
0

a Characteristic Impedance of 50 ohms. Lines A and B were built

and tested by Wigington, while line C was constructed and evaluated

by the author.
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The method of measurement is shown in Fig 4-8. From

frequencies of 30 to 24) megacycles simultaneous measure-

ments were made using both a Rhodes and Schwarz Diagraph

and a Hewlett Packard power meter with its accompanying

,-" thermistor mount. Good correlation was found between the

values of attenuation determined from the Diagraph and from

the power meter. The power meter reading was used since it

could be more accurately read.

The Diagraph is essentially an automatic Smith Chart

AL, which will read attenuation and phase shift directly through

the use Nf a moving spot of light. The power meter was bal-

4a'ced ith the Stripline Spiral out of the circuit. The line

urao ihen broken and the Spiral inserted. The attenuation due

);o the Spiral is then read directly from the meter.

Above 2400 megacycles only the power meter was used.

'hen total Spiral attenuation exceeded 10 decibels, the power

;meter could not be used directly and a slight modification

uas necessary. Individul General Radio pads were measured at

L-, given frequency. Enough of these pads were inserted in the

line so that t: e difference between the total value of the pads

and the xzpected attenuation of the Stripline was less than 10

decibels. The power meter was then balanced with the pads in

the line. Finally, the pads were removed and the Spiral in-

serted. The total attenuation was then the sum of the pad

attenuation and thi reading on the power meter.



20 DB R#S DIAGRAPH

OSCILLATOR 6DBATTEN. c) -') . TEST

TE - LINEi A TEE 0 ::

zDu- 30- 300 Me. --

I ZDD'-300-2400Mc.
UNKNOWNREFERENCE LINE LINE

I. SET POWER LEVEL AND DIAGRAPH TO READ 0 DO.
2. BREAK UNKNOWN LINE AT X AND INSERT TEST LINE.

3. READ ATTENUATION DIRECTLY FROM )IAGRAPH.

METHOD 2 TEST POWERLINE
METER

OSCILLATOR
6DB I HP 430C

/V% ' I HP477B

ATTEN. XTERMINATED 0 0

THERMISTER MOUNT

I. ESTABLISH REFERENCE POWER.

2. BREAK LINE AT X AND INSERT TEST LINE.
3. READ ATTENUATED POWER.

4. CALCULATE ATTENUATION.

COAXIAL COMPONENTS
GR 50 Ohm CABLE, ADAPTERS TEES, ATTENUATORS, ELLS.

OSCILLATORS

R I S SMLM OSC., 30-300 Mc.
GR 1021 SIG. GEN.; PLUG-IN P2,250-920 Mc.

P 4,900-2000 Mc.
GR 1218-A UNIT OSC., 900-2000 Mc, j

HP MOD. 616A SIG. GEN., 1800-4000 Mc. .-.

HP MOD. 685A 5200-8300 Mc. J
R S: RHODE AND SCHWARTZ r
GR GENERAL RADIO CO.

HP HEWLETT-PACKARD CO. 'I
Fig. 4-8. ATTENUATION MEASUREMENTS, METHOD AND EQUIPMENT I'
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It should be noted that no measurements were made on

Spirals A and B above 4000 megacycles. Above this frequency

l values were calculated from equation (5-25). This equation

appears in the chapter on Stripline Transient Behavior.

In the measurement of Spiral C, it was observed that

the attenuation began to rise sharply above 3500 megacycles.

No information wes available as to the increase of loss tan-

gent and the decrease of dielectric constant with frequency

was available locally. Correspondence with the manufacturer

(M1innesota Manufacturing and Mining Company) provided only

one additional value of loss tangent and dielectric constant.

Since theoretical attenuation depends on these two constants

directly, its accuracy is only as good as that of these

parameters. Wigington's results are shown as Fig 4-9a and

the author's as Fig 4-9b. Table 4-1 is also included to show

the information of Fig 1: .-9b in numerical form. Finally a

picture of Stripline Spirals A and C is shown. Spiral A is

opened up to show its interior, while Spiral C is in its

assembled form.

" Z 'I,
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J.4
.. LINEA

:2e r: 2 .73w /A ton.3: 2.56x1O3  K

,.4 -- r =  .73'

-,, " 1. 'X-50 ohms

LIEA "LS -TFO DIELETRIC7

LINEE
;ton.8 133x 10"

- LINE A- GLASS -TEFLON DIELECTRIC
." - LENGTH: 7.40 METERS '

• - LINE 8- GLASS- EPOXY DIELECTRIC
LENGTH - 3.68 METERS

o-Measured %lues.

x -Volues calculated from Eq. 5-25 ,

--- Theoretidal Values

0.1
10 100 1000

FREQUENCY IN Mc. 0

Fig. 4- 9 a. ATTENUATION MEASUREMENTS FOR LINES A and B



LINE C-GLASS -TEFLON DIELECTRIC (LAMACOID 6098)

LENGTH - 26.3 ft.
30mc- 3500 m.

30.0 Er : 2.68 ton. 91= 1.5 x I0- 3

3500 mc- 8200 mc.
er 2.56 ton. 8:1.67 xO 3  ,,

Zo 50 ohms

I0.0O

5.0 Kz, p'
00

3.0
.0

< , " 0 0 -Measured ,Volues0 0
i i/ 0  .. :Theorttical Value$

0.5 0

0.3

20 50 100 200 500 I00 2000 5000

FREQUENCY IN MEGACYCLES

I I

Fig. 4-9b. ATTENUATION MEASUREMENTS FOR LINE C

eU



TABLE 4-1

Theoretical vs. Measured Attenuation of Spiral C.

Frequency Colculated Measured

(mc) Attenuation Attenuation
(dbo) (ch)

30 .5674 0. 41
)ho o. *,652 0.52
50 o.74oo 0.6o
60 o.8244 0.63
70 O.3943 o.68
80 o.96;2 0.72
90 1.033 0.82
100 1.O,;8 0.9
12o5 i.,."51 1. 04

150 1. 395 ].15

175 1. 53 8 1.36
250 1.89) 1.70

300 .. 1..26 1.82
350 .414 2. 0
4o0 ..4- 2.40 7'

o2.7~ g-2.0 -

500 -.. ,.90

6oo 3. 3-L 3. -2.
-(00 3.M) 3.41
800 . 3.63

'00I. * 2 4.2

1000 4.685 4.3
125o 5. 389 5.2
1500 6.313 6.2
1750 7.064 7.0
2000 7.67i 7.2
2400 8.730 9.0
3500 11. 6 i( 11.60
5:200 15.890 1.9. 9 '0
6000 17 '810 23.50
70o0 o.,21o 27.70 6

8oo0 ... 470 28. 80
8o200 2.960 28.90

£ 4 :
0 (..
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CHAPTER V

A TRANMIT ANALYSI3 OF STRIPIMM

A. Introduction.

Since the use of Stripline to perform logical operations

in a computer is a basic aim of this investigation, it will

be necessary to consider its transient properties. Any

digital logic operation depending on signal amplitude will

necessarily involve suare pulses to represent the "1" and "0"

states. The maximum possible rate of performing logical

operations will then be limited in part by the maximum

achievable rise time of Stripline. The means of predicting

this maximum rise time as well as the variables determining

it will be found fk ;.i ' 1ransient analysis. This analysis

will follow an analysis done by Wigington. Wigington's

paper ir the only transient analysis that has been done to

the author's knowledge.

B. Theoretical Model.

To begin the transient analysis of Stripline it Is

necessary to find its voltage transfer function. It was ' 4
shown earlier in this report that Stripline operates in the

TI mode. Since this is the case, the formulas for general

transmission lines hold. The steady state solution for a'

voltage wave on a general transmission line is

n8,
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V Ae + B e (5-1)

where

- a + j (R + jUL) (G +. JC)

I - distance from the sending end of the transmission line

R,LG,C = resistance inductance,. conductance and capacitance

per unit length of line

A and B - Cooplex constants

The function of interest is that of a voltage transfer in

a matched line. The first term of equation (5-1) represents

the incident wave while the second term represents the reflected

wave. Since a mtched line has no reflected wave, the second

term of equation (5-1) irLll be absent. Equation (5-1) then becomes:

V - V(O) e" l (5-2)

where

V (0) is the sending end voltage

From equation (5-2) the voltage transfer function becomes:

V )" e-'rl. •e e ' pl

-e" (cos Pi- j sin Pl) (5-3)

In equation (5-I) the Propagation constant r was defined as
S- [(n • )(G 1/c)]/2

:47-
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Let us now examine the parameters R, LO G and C for the

case of Stripline. In Chapter IV of this report, it was

shown that

b+

o2xr o (4-1)

where

Z = Impedance of a round wire for very high frequencies

f = frequency of interest

p - permeability of the medium

a = conductivity of the medium

ro = radius of wire

It is shown in Rao and Whinnery 1 that equation (1-4.1) is

valid for roi8 > 5.5 if a 10% error can be tolerated (where

8 is the depth of current penetration into the conductor).

In Stripline ro + a since the conductors are actually plane

rather than circular. Also for copper at 3 K mc, 6 = -1.22 x 10 meters.

The assumption that rg8 > 5.5 is therefore quite valid.

qtion (4-41) my be rearranged to rea .

8S 2 2 a
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Let us define

S.2 p 2

(41Cr 0  a), 0

Inserting equation (5-6) into (5-5) there results

- 42

In the discussion following equation (4-14) it was shown that

tan b= -- (5-8)

where

, 9 tan b = loss tangent

aT = conductivity

c = permittivity of the medium

= angular frequency in radians

The equation for a parallel plate capacitor is

C A ( 5-9 )

where:
e permittivity of the medium

A = Area of one plate

d = distance between plates
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Equation (5-8) may be rearranged to read
*qA

tan -& . d (5-10o1

Utilizing equation (5-9) and the basic definition of

conductance, there results

tan (5-1)ac

Now let us examine equation (5-4) which was

r- [(R + j L I) (G + j wC) 1, 2  (5-4)

Consider the term (R + a w L). It wast be remembered

that there are two types of inductance to be considered, .

that due to skin effect and that calculated assuming no

current penetration into the conductor (L,). The resistor

term R is essentially due to skin effect. The term

(R + J w L) may therefore be expressed with the help of

equation (5-7) as

(Rw +e o () (7, + wL

+ + j J L) (5-12)

Now equation (5-11) is
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tanG (5-1

Define

C tan 5 K2  (5-13)

jI Then .equation (5-12) becomes

~~G K2 w 5-

A Through the use of equations (5-12) and (5-)0), equation

(5-4) becomes

~~~-~~ (i j L. J L )(Kc ]/ (5-15)

I Equatior (5-15) can be rearranged to read

K-4=(1+j) 1/2 K,2
S j .L - - ] / (5-16)

by Equation (5-16) is rather unwieldy and may be simplified

by expanding each one of its bracketed terms in a binominal

series. The general binominal series expansions is
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( x)n i+ n(n X * 2< 1 (5-17)

We must first examine the bracketed terms of (5-16) to see

if the condition (x2< i) is met. The "x" term in the first

bracketed term is

J2 , (5-18)

Evaluation of (5-18) deperds on evaluation of Li. K1 in turn

depends on the assumption that

Kc <<1

JL-

Thi assumption will therefore be made and its validity

checked after K_ bas been evaluated. In the second term of

equation (5-16), the validity of

I < <1 (5-19)

ust be checked. Now

, - (5-20)

- Lk
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But from equation (5-13)

K.

At 3 kmc tan 5 < 0.01 for GB 112 T Dielectric. The

assumption of (5-19) is therefore Justified.

Using the first two terms of the binominal expansion

in each term of equation (5-16), there is obtained

[ 31c1(l + J)1

2J
. K-,. [(. + .) "2 (1+-)

Now it was shown that < <<1 and it will be subsequently shown$22C
that

1 (I+J)<

2 4 2 4 L.

It is therefore valid to drop the last term of equation

(5-22). Under this assumption equation (5-22) becomes
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I S

r LC• (5-23)

t a 4 ++5-24)

rJ Tr r~2 2

wh~ere

and

Ii .3

The first tern is a simple delay and in not of interest

In this analysis. We my therefore conclude from equation

(5-211) that

KI +_ - (5-25)

and

.- j= -2-o j2 • - .(5-26)

where

the constant K1 . The rk and 1s lt in Fig 4-7

which expresses Stripline attenuation as a function of its 9/4

parameters. The ordinate of rfig 4-7 i r u n1I

J

_ -rn)p.
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db -/ac b (Km
y. (5-27)

The attenuation constant a in equation (5-27) is in decibels,

whereas the attenuation constant of equation (5-25) is in

nepers. Using the conversion factor from decibels to nepers,

we see that

(X nepbe se y nepers (cycle)'/2

=3.64x y-6 (5-28)

Equation (5-25) is made up of two terms, the first due

I to copper losses (a ) and the second due to dielectric

losses nepanthlosses (ad). If equation (5-28) is solved for Cc and the

result equated to the first term in equation (5-25) the

desired solution for K1 results. It is:

• ~2 y'e r  °
.. .. B(5-29)

1The expression we wish to examine to determine the

validity of equation (5-22) is

4___
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< < z(5-30)
,G L

Let us examine equation (5-30) for a "worst" case.

Take:

y - 1.7 x I0 "3 (maximum ordinate on Fig 4-7)

Rom 98.5

b - 0.125 inch

er" 2.6

C - 0.553 wfd/in. V
These values were obtained from the Table of Characteristic

Impedance Measurements given in Chapter I. If tht ;e values are

-8
used in equ'tion (5-28) and (5-29) we find that K1 - 8.91 x 10

The value of Ia can be found by realizing that

or R L ''(5-31)

0

Inserting the given values of Characteristic Impedance

and Capacitance per unit length, we find that I- 5.37 x 10 9 henries.

If a frequency of 3 Xmc is asouned

-. 22 x 10 < <1 (5-33) C 4

L ,
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Then the assumptions required for the binominal

expansion are justified and we may proceed with the

development.

; C. Stripline Transfer Functions.

The transfer function to be investigated can now

be written from equation (5-3), (5-25) and (5-26). It is

-K C4K1 , K1

F(W)- e e 2 e 2 (5-3 4 )

In our investigation of equation (5-36), it would be

desirable to be able to apply the physical realizability

conditions given for transfer functions of lumped constant

systems to transmission line transfer functions. Bode

shows that provided the delay of propagation term in the

expression for the propagation constant (equation 5-24) is

subtracted out, the analogy is valid. Since the first term

of equation (5-24) has already been removed in the derivatitn.

of equation (5-34), F() must satisfy the realizability

conditions for lumped constant transfer functions. These

conditions are given by Bode 4 and Balbanian and am:

tt
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(1) Zeroes and Poles are either real or occur in

complex conjugate pairs. -

(2) The real and imginary components are respectively

even and odd functions on the real frequency axis.

(3) Bone of the poles can be found in the right hand

plane.

(4) Poles on the real frequency axis must be simple with

imaginary residues. i
(5) No Poles of the voltage transfer function F(cu) can

lie at 0 or co.

(6) The Zeroes of F(co) may be multiple and can lie any- "

whqre in the s plane.

(7) From physical reasoning, it is obvious that F(c) -10

as w .. + w and I F(w) < for.all a.

For those who may be unfamiliar with the pole zero concept

the following definitions are given:

(1) A Zero is that value of frequency which causes F(a')

to go to zero. -

(2) A Pole is that value of frequency which causes F(o) -'

to go to C. I
If condition (7) is met, the other conditions will be met.

Examination of equation (5-34) shows that for m' O, coadition

(7) is met but for a) <.0 this condition is not satisfied.
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Let F(0) be broken into two parts sach that:

~F(o) F, F(w) ()  (5-35)
F~w) a + w

where

Fl(W) a term due to dielectric loss

F2 (W) - term due to skin effect

'I Consider first the dielectric term

- K2 Ro 0

PFlcu) e 2 (W >O) (5-36)

Since the attenuating case is wanted tor both positive and

C negative frequencies, it seems obvious that for all w, Fl(O)

should be

Fi(w) e 2 (for all w)(5-37)

Now let us consider the skin effect terms

'2 2 RO 2 '-
P2 (a)) . oo (5-38)

For staplicity, define

!



132

K (5-39)

i

With equation (5-39) inserted, equation (5-38) becomes:

-K&)e Jr -j K TCF 2()- cK e - (5-4). 1
I +V

el

Equation (5-40) must hold for negative as well as
oe45 -!2.

positive fr6quencles. Bode states: "In ary real physical

circuit, the real component of the impedance is an even

function of frequency and the imaginary component is an odd

function. In other words, the real component of the impedance

at a negative frequency is equal to its value at the corresponding -

positive frequency, while the imaginary component at a negative

frequency is the negative of the imaginary component at the i

corresponding positive frequency". Let us then postulate .

F2(-o,) u -Ke1 (i +a)

-K 4 I(OI (1 -J,.+ (5-41) ++ ...-KfT ia (5.Je) 4 +"

and examine the validity of equations (5-40) and (5-41) under

Bode's conditions. Fro= equation (5-0)
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Re ) Re e + j

IF
-K'S Ie .cos K 4 (5-2)

and from equation (5-41)

eR - K I-( J-

= e KT3 c os K 47 (5-43)

Therefore

R eF 2(m) ]R eF 2(O) (5-4i4)

and Bode's first condition is fulfilled, Also from

equation (5-40)

e sin Kfo eu (5-45)

and from equation (5-41)
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i ; I m Le I l I I

- K4 T sin K FJF (5-46)

As a result of equation (5-45) and equation (5-.6)

in [ F2( o I F,( (5-47) ,

and Bodets second condition is fulfilled. Our postulation

is therefore valid. In surm&ay then

F,(w) Ke ( > 0

.e ".F1'F(1i) ,<0 (0-14)

It is desirable to express F2(c) as a function of jm.

We therefoxv: make the following transformations:
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-K j) K (l + 

and

F2() - e - K(l-J) e I J

e K2 F (5-50)

Comparison of equations (5-49) and (5-50) shows that for < 0

F2(a)) - F2(w) (5-51)

Now if we let s - jw and use analytic continuation, we obtain

the final result which is

2 R°

F,(s) = e" K % - e 0  ( -s2)

D. Skin Effect Transient.

Equation (5-52) has been solved by Wigington and 
Nahman46

This paper is included as Appendix VII. From this analysis,

the impulse response is found to be

I
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*"o_(t) c t 32e- t t>

.0 t < 0 (5-53)

where

K i 11

In a similar manner, the step response was found to be

9 (t) er t >o

o t <o (5-54)

and the ramp response is

h erf c 47 -rd-c r

a 0 T < 0 (5-55) 1
where:

wn t-afort>a

v =0 for t <a ;

a. 0-1000 rise time of a unit ramp.

I 4
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Equation (5-53) is shown graphically in normalized form as
I

Fig 2 of Appendix VII whereas equation (5-55) is shown

graphically in normalized form as Fig 3, 4 and 5 of that

Appendix having normalized ramp rise time as a running

parameter. The curve for a = 0 corresponds to the step

response (equation 5-54). Use of these curves will be

discussed later.

E. Transient Due to Dielectric loss.

The transfer function for the dielectric was given as:

2[A FI (co)m-e

[;o -Ko
=e (5-37)

where:

Y,2 R o 1
IK = ...

o 2

The transform of equation (5-37) is given by Cambell and

Foster as

KO
l(t )  t 2 Ko 2) (5-56)

(o0
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Equation (5-56) is the dielectric impulse response and

is shown in normalized graphical form as Fig 5-1.

The dielectric step response can be obtained from the

impulse response (equation 5-56) by the following manipulation:

G1(s) = 1/s F1(s)

3(t). f/ l (-r) dtI

t +Ko )

- 1/2 + 1/3t tan (t/Ko) (5-57)

Let us now examine equation (5-37), (5-56) and (5-57).

The following observations may be made; ["

(1) For the analysis performed the mathematics holds

for all time, both positive and negative, according

to the transform Tables.

(2) Equation (5-37) is supposedly a network transfer

function, yet it is not analytic.

(3) The time response is from a transfer function

which has no phase time and no delay, yet it seems

to satisfy the requirements as a network function,

except for analyticity. I

------ -----
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(4) Physical reasoning would require that there be no

response prior to an excitation, i.e., the response I

should be zero for t < 0 and for t -+, g(t) -i.-

Equation (5-57) fulfills the condition gl(t) --I as w

t b-, but for t < 0 g (t) -*0 only as t - i.e.

g (t) 0 0 for t < 0.

(5) If equation (5-56) is assumed to be true for t > 0

only (with f(t* 0 for t < 0), then the constant

1/2, in equation (5-57) is not obtained in the step I
response and G(t) -+1/2 as t -- rather than a

value of unity as it should.

(6) The dielectric step response was obtained from the I

impulse response by integrating in the time domain.

Let us find the step response in the fiequency

domain, then transform it to the time domain. The

dielectric impulse response was

, ( e (5-5)

The step response in the following domain would then be V
-KO u

G1 ((o)= , (5.58)

F.,
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From Table 1 of Cambell and Fosterk)

-K Iol

Pair 633: e 0- 1/s-+ I/n tan, K (5-59)

Pair 107: ----- 1 t > 0 (5-60)

Pair 201: F+ F2  -.- GI +G (5-61)

Equations (5-58) through (5-61) may be manipulated to yield

the transform mate of equation (5-58) as follows:

s F F-)+l/s

11

'4x tan to)

"G1 2  g(t) > 0 (5-62)

Equation (5-62) may be further manipu tlated to yield the

same result as that given by equation (5-57)

- --M-i "



(. 1 t) I - I/X taafI K0~/0)

mb [1g /2 +i n -- a- Ot

* 1/g [ic/2 +- tan-(/c 0

N'ote that equation (.6)is, valid omly for t > 0 whereas

oqnation (5-57) is valid for both positive and negative time.

Ph-alcal reaswuiuig 'tells us QWLa f'or t <0 .,(t) should be

zero while for t-+o 92 (t)-+l. U1quatioc (5-63) theefowo isthe-

reCnl- required. let the Lather.latias be true in detail f'or

t > 0. In order to over:omae the objection resultina from~()

obsorve that the DO valme of' a atep excitation over all time

(from c to + c)is 1/2. Since there in no delay and the

traxioier Amuetion at zero frequency is unity, this appears

0.0 a step of' Value 1/2- at the ouwiput. The response duie t6

frequency components Greater than zero Is describedl by the

ai'ctan~ent function and is added to the atep due -!o the DC .
term.. In additiun, to preserve Ible izitegra1 rlationsip

betueen -the impulse and step response the requirement that

the area, under impulse ivsponse f'or all timu is unity.. an

iriulcae of' value 1/2 at t u0 oust be postulated. ri~ra 5.!2

chow equatiun (5-56) in, gmshica.. form.



143

7 1 It-la

j., _4.I

a 
0

* **-~*- -av

20I
a)M ,. I

al'a

7 T.

DILC I I 15a

Ji IT 1



We now have the inipulse and step response for the dielectric.

Finally, the response to an arbitrary ramp will be considered.

It is sholai in Gardner aud Barnes that i' the impulse response

Is hnouin, the response to any arbitrary driving function may be t

found by convolving the driving function and the itiuloc re-

sponse in the tie do main. This principle has a ready been

used in finding the rwirp response to skin effc t in Appendix VII. -

Let us postulate the fiollowin: norialized unit ramp:

0 x < 0 :"t = 0

x>a

where:

a. 0-100, rise t,.e of a finite ra .

Equation (5-'6) modified as described above consists of

two parts; the initial ivipulse and the part due to the rest

of the iC ju.se. Each part !rill be dealt with separately and t

the results added. In normalized form equation (5-53) is: -

X, f(t/- ( ) t > 0

0 1 0o

mo 0t<o0 (3-65)
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The response to a unit ramp r(;&) will be of the form:

yB

fo
hl(y) m 1/a r(x) + f(x) r(y-x) dx (5-66)

: hla(Y) + h lb(y)

Considering the second term of equation (5-66) in conjunction

with equaticn (5-65) and letting x = t/K0 there results

hl(Y ) = r (y-x) d:: (5-67)
lb f o . + )

Observe that when Lhe scale change t/Ko is made in

equation (5-65), fl(t/K0 ) fl(x), preserving th-r area under

to impulse response to be unity. Equation (5-67) must be

considered in three parts corresponding to the three parts

of :(x) (equation 5-64)

Case I: y < 0 h 0 (5-68)
lb

Case II: o<y _Sa

hlbo(y) =/ U' ( x)

- [y tan-' y 1/2 in (1 + 2) (5-69)

- -
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Case III: y > C1

h()dx +.P~ 1/3t

0 (l +) -

l i/g tan-l (y.') + 1/ag X

ta1 ytan (y -,L)) 212i -1 -- (5-70)

If the approporiate ramp responses are included in hl a(y)

the required equations are obtained:

hi(y) = 0 y < o

hl(y)=yl2+ 1/alt [y tanl y - 1/2 In (1 + y2)] 0 <y <

h1 (Y)1/2 + 1/g tan- (y.c) +.l/C, [y (tan-l y - tan-l(y.)) i

1/2 il +( .y)] > a (5-71)
+ (Y-a)

The behavior of equations (5-73) is correct in that

hl(O) ( 0; h1 (a) in Case III reduces to that of Case II;

For large y, h(y)-+ g1(y)-+l; and for %+ o, h1 (y)-.g.9(y).

For ease in working practical problems, equations (5-71) hbave

been put in graphical form and are shown an Fig. 5-3. The

practical use of Fig. 5-3 in conj~mction with the curves of

Appendix VII will now be shown in a practical example.
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F. Eperimental Verification:

l e Measurement Procedure:

A theoretical analysis is only as valid as its

agreement with actual .,esults. Let us proceed then to an

experimental verification of Stripline transient behavior.

At the time that the transient analysis was begun, it

was thought to be desirable to be able to record the input

and output waveforms from a Stripline configuration on graph

paper. Consequently, a study was undertaken resulting in a

report included as Appendix VIII. This report compares

oscilloscope and graphical results and imposes limitations

on the speed of the recording sweep. The procedure =ploys

a Lumatron sampling attachment and a Ballantine peak read-

ing voltmeter. As can be seen from Fig. 2 of Appendix VIII,

the observed pulses were those of an SKL pulse generator.

To observe the transient reaonse of a Stripline configuration

then, it is only necessary to; (a) record the output 're of

the SL generator, (b) break the signal line between the gen-
erator and the Luwatron delay unit and insert the dcvjce and

(c) record the resulting output pulse of the device. Since :
the system is assumed linear, any degradation of the SKL

pulse must be due to the Stripline device (the degradatioc

due to the rest of the system is included in the measurement

of the SL pulse).
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2. Trnient Response ME!mple:

In order to use the theory described in the

preceding sections, it is first necessary to approximate

the input pulse to the Stripline device by a series of ramps.

Rather than use a graphical recording of the input pulse, it

was decided to use the equivalent oscilloscope photograph.

Consequently, Fig. 3b of Appendix VIII was decided on and

blown up to 8 X 10 inch size. It was overlayed with graph

paper and approximated by a series of ramps. The result is

shown as Fig. 5-4. The reader may wonder why the essentially

straight line from (0, 0) to (1.0, 0.834) was broken into the

three sections, (0, 0) to (0.35, 0.283), (0.35, 0.283) to

IN" (0.715, 0.583) and (0.715, 0.583) to (1.0, 0.834). This was

done in order that the individual ramps would fall in the

range of the tabulated curves of Fig. 5-3 and Appendix VII.

The Stripline device under investiption was the Spiral

used for attenuation measurements in Chapter IV. We must

therefore first find the values of KO and P which respectively

describe the dielectric and skin effect responses of the

Spiral. These constants can be found from equation (5-25)

which was

a (w). = - t nepers/uzait length (5-25)
0

2Ro 1
Define K ° ,,-20

__0
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and
2I

then

c0(w) w +%12 -Pw nepers (5-72)

NOW

1 neper - 8.68 db.

Be

(w) a 8.68 (K0 w +r2-W) db. (5-73)

From Table 4-1 in the chapter on Stripline attenuation,

we see that

frequency a theoretical C measured I
400 mc 2.45 db 2.4 db

3500 me 11.67 db ni.6 db

Using these values of frequency and theoretical attemation

(detemined from the graph of Fig. 4-7), we a obtain from j
equation (5-73)

0.282. 25.2 X 108  + 7.1 X o0
V

and

1.35.aMKo X 108  + 21X1o 4 ,rP

Solving equation (5-74) and (5-75) si.,ltmouslYs we find

-12
A - 7.3 X 10

and

Ko -3.-57 X Z "

,.
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a. Dielectric Response:

* Now that the constants Ko and P have been0t
obtained, we can use Fig. 5-3 to obtain the dielectric

response of the Stripline Spiral. The four ramps obtained

from Fig. 5-4 will be considered individually. The total

dielectric response is then obtained by adding the individual

responses (superposition).

al. First Ramp:

Amplitude n 0.283I; -9
Rise Time a = 0.35 X 10 sec.

a. 3.5 X 1010 w.9.82K0  0.357 X 1010

X, O7 o 28 t (t in lO "9 sec.)IO a 3.57 X 10- n

From Fig. 5-3
t ( 0"9 sec.) X a 28 t Response 0.283 Response

0.05 1.4o 0.09 0.025

0.10 2.8 0.22 O.062

0.15 4.2 0.36 0.102

0.20 5.6 0.48 o.136

0.25 7.0 0.62 o.176

0.30 8.4 0.75 0.212

0.35 9.8 0.88 o.249

0.40 3a.2 0.93 0.263

o.15 12.6 0.96 0.272
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t (1o - 9 sec.) x =28 t 0.283 tesPonse

0.50 14.0 0.97 0.275

0.55 15.4 0.98 0.276

o.6o 16.8 1.0 0.283

0.65 18.2 1.0 0.283

0.70 19.6 1.0 0.283

0.75 21.0 1.0 0.283

0.80 22.4 1.0 0.283

0.85 23.8 1.0 0.283

0.90 25.2 1.0 o.28J
0.95 26.6 1.0 0.283

1.0 28.0 1.0 0.283

1.05 29.4 '.0 0.283

1.10 30.8 1.0 0.283

1.15 32.2 1.0 0.283

1.20 33.6 1.0 0.283 4
1.25 35.0 1.0 0.283

The last collun may be scoewhat confusing. The response

of Fig. 5-3 is based on a ramp of amplitude unity. Since the

first ramp has only an amplitude of 0.283, the response of

Fig. 5-3 must be adjusted accordingly.

a2. Second Ramp:

Amplitude a 0.583 0.283 - 3.00

Rise Time = (0.7 - 0.350) x 10 o.365 x o"9

o.15 x 9  10.2
3.57 X 10 1
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t (109 sec.) X 0 28 t Response 0.30 Response

0.05 -0.35 0 0 0

0.10.'-035 00 0

0.15 -0.35 0 0 0
0.2o 0.35 0 0 0

0.25 -0.35 0 0 0

0.30 -0.35 0 0 0

0.35 - 0.35 0 0 0

o.4o - 0.35 = 0.05 1.4 0.09 o.027

0.45 - 0.35 = 0.10 2.8 0.21 0.063

0.50 - 0.35 m 0.15 4.2 0.34 0.102

0. 55 - 0.35 a 0.20 5.6 o.46 0.138

6o.6r - 0.35 = 0.25 7.0 0.58 0.178

0.65 - 0.35 a 0.30 8.4 0.73 o.214

0.70 - 0.35 a 0.35 9.8 o.87 o.261

0.75 - 0.35 n 0.40 11.2 0.93 0.279

0.80 - 0.35 = o.5 12.6 0.95 0.285

0.85 - 0.35 a 0.50 14.0 0.96 0.288

0.90 - 0.35 - 0.55 15.4 0.97 0.291

0.95 - 0.35 a 0.6o 16.8 1.0 0.30

1.00 - 0.35 n 0.65 18.2 1.0 0.30

1.05 - 0.35 = o.7o 19.6 1.0 0.30

1.10 - 0.35 = 0.75 21.0 1.0 0.30

1.15 - 0.35 = 0.80 2.i 1.o 0.30

1.20 - 0.35 a o.85 28.8 1.0 0.30

1.25 - 0.35 = 0.90 25.2 1.0 0.30
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The value of 0.35 X 10 - 9 seconds subtracted from the

time in column one way cause some confusion. It must be

remembered that we are interested in the superposition of

the contribution of a number of ramps. If ramp one starts

at time t - 0, then ramp two doies not start until time

t n 0.35 X 10-9 seconds. In a similar manner ramp three

begins at time t m 0.715 X 10-9 seconds and ramp four begins

at time t n 1.0 seconds.

a3. Third Ramp:

Amplitude = 0.83; - 0.583 - 0.251

Rise Time = (1.000 - 0.715) X 10- 9

U 0.285 X 10- sec.

0.285 X E -9
3.57 x 1011

10 9 sec.Reonse

0.05 - 0.715 0 0 0

0.10 - 0.715 0 0 0

0.15 - 0.715 0 0 0

0-20 - 0.715 0 0 0

0.25 - 0.715 0 0 0

0.30 - 0.715 0 0 0

0.35 - 0.715 0 0 0

0.40 - 0.715 0 0 0

0.45 - 0.715 0 0 0

0.50-- 0.715 0 0 0

i~1
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t (10-9 sec.) x P -8 t Response 0.251 Response

0.55 -0.715 0 0 0

0.60 - 0.715 0 0 0

o.65 - 0.715 0 0 0

0.70 - 0,715 0 0 0

0.75 - 0.715 = 0.035 0.98 0.076" 0.019

0.80 - 0.715 = 0.085 2.38 0.215 0.054

o.85 - 0.715 - 0.135 3.78 0.38 0.095

0.90 - 0.715 - 0.185 5.18 0.538 0.138

0.95 - 0.715 = 0.235 6.58 0.71 0.173

1.00 - 0.715 - 0.285 7.98 0.862 o.216

1.05 - 0.715 - 0.335 9.38 0.925 0.232

1.10 - 0.715 0.385 10.78 0.950 0.238

i15 - 0.715 - 0.435 12.18 0.96 0.240

1.20 - 0.715 - .i85 13.58 0.97 0.243

1.25 - 0.715 - 0.535 14.98 0.97 0.243

a4. Fourvn Ramp.

Amplitude - 1.00 - 0.834 - 0.166

Rise Time w (1.15 - 1.03) X10 - 9

a 0.15 X 10 - 9 sec.

a 0.15 x 1o . 9  4.a .
3.57 X 1011

10 0ec. x - 28 t Response 0.166 Response

o-r)5 0 0 0 0

0.10 -1.0 0 0 0
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t (10 - 9 sec. ) x 28 t Response 0.166 Response

0.15 - 1.0 0 0 0

0.20 - 1.0 0 0 0

0.25 - 0-0 0 0 0

0.30 - 1.0 0 0 0

0.35 - 1.0 0 0 0

0.40 - 1.0 0 0 0

0.45 - 1.0 0 0 0

0.50 - 1.0 0 0 0

0.55 - 1.0 0 0 0

o.6o - i.o 0 0 0

0.65 - 1.0 0 0 0

0.70 - . o 0 0

0.75 - 1.0 0 0 0

0.80 - o 0 o

0.85 - 1.0 0 0 0

0.90 - 1.0 0 0 0

0.95 ,.,0 0 0 0

1.0 -1.0 C 0 0

1.05 - 1.0 a 0.05 1.4 0.24 0.039

-1.10 - 1.0 = 0.10 2.8 0.534 0.0

1.15 - 1.0 w 0.15 4.2 0.830 0.138

1.20 - 1.0 0.20 :.6 0.905 0.150

1.25 - 1.0 a 0.25 7.0 0.930 0.154
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a5. Total Dielectric Response:

The total dielectric response is found

by adding the response of the individual ramps at a given

time. For instance, the total response at time t a 1.25 X 10

seconds is

(0.283 + 0.30 + 0.243 + 0.154) M 0.98

t(10 9 sec.) Total Dielectric Response

0.05 o.o26

0.10 0.062

0.15 0 .102

0.20 0.136

0.25 0.176

0.30 0.212

0.35 0.249

o.4o 0.290

0.45 0.335

0.50 0.377

0.55 0 .414

0.60 0.461

o.65 o.497

0.70 0.544

0.75 0.581

0.80 o.62

o.85 0666

0.90 0.712
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t (10-9 sec_.j Total Dielectric Response

0.95 0.761

1.0 0.799

1.05 0.854

1.10 0.907

1.15 0.962

1.0 0.967 L .
1.25 0.980

Total dielectric response is shown in graphical form

as Fig. 5-5. For comparison, the input pulse approximation

has also been included. As can be seen, the dielectric

causes the rise time of the input pulse to deteriorate somewhat.

b. Skin Effect Response:

Now thet the degradation of the input pulse

rise time due to the dielectric has been taken into accout,

we wish to examine the degradation of rise time due to skin

effect. This is done by approximating the dielectric response

shown in Fig. 5-5 by a series of ramps and applying these

ramps to the graphs of Appendix VII. As in the dielectric

response analysis, the ramps were chosen so that they fell

in the range of the graphs.

bl. F

Amplitude n 0.25

Rise Time n a a 0.35 X 10 . 9 sec.
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pu-t/Pm t x 1o - 9  17ttno~e.
7. X 1

P7.-3 X z1-12 137 t (t in 10"9 see.)

-12(P = 7.3 X 10 was determined in section F 2)

0.35 X 10- 9  48

7.3 X 10
12

For this value of a, use Fig. 4 of Appendix VII.

t (10-9 sec.) p - 137 t Response 0.25 Response

0.05 6.85 0.04 0.01

0.10 13.7 0.13 0.03

0.15 20.6 0.25 0.06

0.20 27.4 0.35 0.09

0.25 34.3 0.44 o.u

0.30 41.1 0.56 0.14

0.35 48 0.70 o.18

0.40 54.8 0.76 0.19

0.45 61.7 0.80 0.20

0.50 68.5 0.81 0.20

0.55 75.4 o.84 0.21

o.6o 82.2 0.85 0.21

0.65 89.1 0.86 0.22

0.70 96.0 0.87 0.22

0.75 102.8 0.88 0.22

0.8o 109.5 0.89 0.22

o.85 u6.5 0.89 0.22
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t (10 - 9 sec.) P - 137 t Response 0.25 Response
0.90 123.3 0.89 0.22

0.95 130.1 0.89 0.22

1.0 137.0 0.90 0.23

1.05 143.9 0.90 0.23

S1.10 151.0 0.90 0.23

1.15 157.5 0.90 0.23

1.20 164.5 0.90 0.23

1.25 171.2 0.90 0.235

As was the case in the dielectric response analysis,

the graphs assume a ramp of unit amplitude. Column four

of the above table adjusts the amplitude of the Graph to

F the ramp under discussion.

b2. Second Ramp:

Amplitude - 0.62 - 0.25 - 0.37

Rise Time n (0.80 0.35) X

= 0.45 X 10"9 sec.

U. o.45 X 10oS) n 61.7
~7.3 X 10

Using Fig. 4 of Appendix VII, we obtain the following table.

(19sec.) P a 137 t Respo.nse 0.37 Response

0.05 - 0.35 0 0 0 -

0.10 - 0.35 0 0 0

0.15 - 0,35 0 0 0
0.20 - 0.35 0 0 0

I,
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t (10 - 9 sec.) p 137 t Response 0.37 Beilmse -

0.25 - 0.35 0 0 0
0.30 - 0.35 0 0 0

0.35 - 0.35 0 0 0

0.40 - 0.35 a 0.05 6.85 .04 0.02

0.45 - 0.35 - 0.10 13.7 0.08 0.03

0.50 - 0.35 - 0.15 20.6 0.23 0.09

0.55 - 0.35 - 0.20 27.4 0.32 0.12

o.60 - 0.35 - 0.25 34.3 o.36 0.13

o.65 - 0.35 - 0.30 41.1 0.47 0.17

0.70 - 0.35 - 0.35 ,8.o 0.58 0.22

0.75 - 0.35 - 0.1o 54.8 0.64 0.24

0.80 - 0.35 = o.45 61.7 0.73 0.27

0.85 - 0.35 - 0.50 i8.5 0.77 0.29

0.90 - 0.35 - 0.55 75.4 0.80 0.29

0.95 - 0.35 - o.6o 82.2 0.83 0.31
0.0 - 0.35 - 0.65 89.1 0.85 0.32

1.05 - 0.35 - 0.70 91.0 0.86 0.32

1.10 - 0.35 - 0.75 102.8 0.86 0.32

1.15 - 0.35 a 0.8o 109.5 0.87 0.32

1.20 - 0.35 w 0.85 116.5 0.87 0.32

1.25 - 0.35 - 0.90 123.3 0.88 0.33

It will be noted that 0.35 X seconds is sV'brscted

from all values of time in column one. The reaxaorv4 is the

same as that used in the dielectric respoms, i.e., the
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second ramp does not begin until ramp one has been on for

0.35 X 10-9 seconds.

b3. Third Rmp:

Amplitude - 0.96 - 0.62 0 0.34

Rise Time = (1.15 - 0.80) X 10 - 9

- 0.35 X 10'9 sec.

7.3 X 10

Using Appendix VII, Fig. i

t 11o9 137 t Resonse 0.4Ree pnse

' 0.05 - 0.80 0 0 0

o.io - .8o 0 0 0

0.15 - 0.80 0 0 0

0.2o - 0.80 0 0 0

0.25 - 0.80 0 0 0

0.30 - 0.8o 0 0 0

0.35 - 0.80 0 0 0

0.40 - 0.80 0 0 0

0. 5 - 0.80 0 0 0

0.50 - 0.80 0 0 0

o.55 - o.8o o0 0

0 - 8 o 0 0

c.65 - 0.80 o 0 0

0.70 - 0.80 0 0 0

0.75 - 0.80 0 0 0

0.80 - 0.80 0 0 0

4
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t (io"9 sec.) p - 137 t Response 0.34 Response

0.85 - 0.80 = 0.05 6.85 0.04 0.01

0.90 - 0.80 a 0.10 13.7 0.14 0.05

0.95 - o.80 - 0.15 2o.6 o.25 0.09"

1.0 - 0.80 - 0.20 27.4 0.35 0.12

1.05 - 0.80 n 0.25 34.2 o.44 0.15

1.10 - 0.80 - 0.30 41.1 0.58 0.20

1.15 - 0.80 a 0.35 48.0 0.70 0.24

1.o - 0.80 0o.40 54.8 0.73 0.25

1.25 - 0.80 - 0.45 61.7 0.80 0.27

b4. Fc 'th Ramp:

Amplitude = 1.0 - 0.96 - 0.04

Rise Time = (1.31 - 1.15) X 10-9

= o.16 x 1o-9 sec.

o.16 XLo .7.3 X 1o-2

For an a of 21.9, Fig. 3 of Appendix VII was used to determire j
the table for the fourth ramp.

t_ O" sec.) P n 137t Response 0.04 Response

0.05 - 1.15 0 0 0

0.10 - 1.15 0 0 0

0.15 - 1.15 0 0 0

0.20 - 1.15 0 0 0

0.25 - 1.15 0 0 0

0.30 - 1.15 0 0 0
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t (1o- sec.) o , 137 t Response 0.04 Response

0.35 - 1.15 0 0 0

0.40 - 1.15 0 0 o0
0.45 - 1.15 0 0 0

0.50 - 1.15 0 0 0

0.55 - 1.15 0 0 0

o.6o - 1.15 0 0 0

0.65 - 1.15 0 0 0

0.70 - 1.15 0 0 0

0.75 - 1.15 0 0 0

0.8o - 1.15 0 0 0

0.85 - 1.15 0 0 0

0.90- 1.15 0 0 0

0.95 -1.15 0 0 0

1.0 - 1.15 0 0 0

1.05 - 1.15 0 0 0

1.10 - 1.15 0 0 0

1.15 - 1.15 0 0 0

1.20 - 1.15 6.85 0.12 0.005

1.25 - 1.15 13.7 0.33 0.013

b5. Total Skin Effect Response:

Total skin effect response is found by

adding up the contributions of the individual romps at a

given time. Thus, for t a 1.25 X 10 seconds the total

response is (0.235 + 0.33 + 0.27 + 0.013) o 0.84

14
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ii
t (10-9 see.) Total Respone

0 1 (10.01

0.10 0.03

0.15 0.06

0.20 0.09

0.25 0.11

0.30 0.14

0.35 0.18

j.40 0.21

o.45 0.23
0.50 0.29

0.55 0.33

0.60 0.35

0.65 0.39
0.70 0.43

0.75 0.46

0.80 0.49

0.85 0.52

o.90 0.57

0.95 0.62

1.0 0.65F

1.25 o.81
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Now the total skin effect response is really the

transient response of the Spiral, since we started by

approximating the dielectric response. Figure 5-6 presents

the results in graphic form.

A photograph of the transient response of the Stripline

Spiral was made utilizing the method described in section F 1.

The signal line between the pulse generator and the Lumatron

delay unit was broken and the Spiral inserted. The resulting

waveform was photographed and blown up to 8" X 10" size.

This picture is included for comparison and follows Fig. 5-6.

Correlation between the theoretical transient response given

by Fig. 5-6 and measured transient response given by the

picture following Fig. 5-6 is quite good. Both have rise

times of about 1.25 X 10-9 seconds.
+:+ 40

Wigington also did an example of his paper although

his calculations were not included. His input pulse is

shown as Fig. 5-7. The theoretical vs. measured response

of his Spirals are shown as Fig. 5-8. A summary of the

characteristics of these Spirals are included as Appendix IX.

!I
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G. Sg~

We have seen that knowing copper and dielectric thickness,

dielectric constant, loss tangent and desired characteristic

impedance, we can find the transient response of a Strijline

device. The analysis proceeds in the following steps: (i)

approximate the input pulse by a series of ramps, (2) apply

these ramps to the graph of Fig. 5-3 and add the contribution

of the individual ramps to obtain the dielectric responre,

(3) approximate the dielectric response by a series of ramps,

and (4) apply these ramps to the graphs of Appendix VII and

add the individual contributions to obtain the skin efftct

response. This response is the transient response since we

have taken dielectric degradation into account by considering

dielectric response as the input pulse to the skin effect

analysis.

I
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APPENDIX I

SIZE AND COST CAIDUIATIONS FOR A
1000 LOGICAL ELENT COMPUT

A. Waveguide Construction.

1. Size

Logical operations in waveguide may be performed

through the use of a Magic Tee. The dimensions of a

comaercially available 3 kmc Magic Tee are shown in Fig Al-l.

4I

~Fig AI-I A 3 kme Magic Tee

i To allow for terminations and space occupied by

interconnecting cables, assume each Magic Tee Occupies I cu. ft.

One Thousand Magic Tee's would therefore occupy 1000 cu. ft.

I
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2r, Cost

The catalog retail price of a 3 kmc Magic Tee

is $160. The cost of 1000 Magic Tee's would therefore bc

$160,000.

B. Striplline Construction.

1. Size

Logical operations in Stripline may be performed

through the use of Hybrid Rings. The theory of the Hybrid

Ring dictates that its winimum circumference be 1.5 X where X.

is the wavelength in Stripline. The configuration of a

Hnybrid Ring is shown as Fig Al-2.

2 -4
3 2o

Zz0  4 -

Fig A1-2 Configuration of a Hybrid Ring

The free space wavelength at 3 kmc may be found from

the relation 8
x . - .... 0 cm -(A-)

3 x 109
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Stripline wavelength is related to free space wavelength

by: Xt XAW-2)

er

where er is the relative permitivity of the dielectric.

Present day Stripline has a Glass Teflon dielectric whose

relative permitivity is 2.82. The wavelength in Stripline

is then:

Xt I X 10 cm .5.95 cm

The circumference of the Hybrid Ring is then;

C n 1.5 X a 1.5 x 5.95 8.3 cm (AW-3)

This circumference corresponds to a diameter of

D , 8.23 cm -2.84 cm , 1.12 in (Al-4)

This stray coupling between rings must be considered

next. It has been noted in literature that "separation by

approximately the ground plane spacing is sufficient to achieve

negligible coupling between adjacent lines. Application of

this statement to a ground plane spacing of 1/8 inch leads

to the conclusion that the adjacent Hybrid Ring should be at

least 1/4 inch apart. For our approximation let each Hybrid

Ring be centered on a cquare of Stripline 1 1/2 inches in

a side. Now suppose the 1000 logical element computer is
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constructed of 100 sheets of Stripline with 10 Hybrid

Rings per sheet. Each sheet will be 15 inches on a side

and 1/8 inch thick. A stack of 100 sheets would therefore

occupy about 2 cu. ft.

2. Cost.

I, The cost of producing a 1000 logical element

Stripline computer can be broken down as follows:

200 Double Clad Teflon Fiberglass boards "$*)4,000.00

Developer, Sensitizer, and Laquer $ 100.00

Labor, Art Work and negative $ 500.00

Drilling and shearing $L

$4,700.00

It must be remembered that Stripline consists of two

Double Clad boards sandwiched together. Therefore 200

double clad boards are required for 100 Striplize comnonents.

2A

. -



APPENDIX II
L!

A DISCUSSION OF THE TEM MOVE

A. Maxwell's First Iaw.20

'e first set of equations is based on the circuital

law of magnetism which in equation form and in rationalized

units is: JH dl =1 (A2-1.)

where H is the magnetic field intensity in amperes per meter

and I is the displacement or distance along the closed path

which encircles the current. In this derivation, the current

I is expressed in amperes and is equal to the sui of con-

duction and displacement currents, and the displacement 1

is expressed in meters. (It is understood that in general

H is a function of both time and space).

Hy

(Ey) ,

b P1

dx H2 r

(19y) "

HI
(Ez)

Fig A2-1 Element of volume in the electromagnetic field.
Cartesian Coordinates.

A5
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V° If all space is assumed to be filled with electric

currents and the associated magnetic fields, it is a

relatively simple matter to establish the relationships

between the space variations in H and the current densities

which exist at any point in space. This set of relation-

ships is sometimes referred to as Maxwell's first law.

Let Fig A2-1 represent an elemental section of space filled

with electric and magnetic fields, and with the associated

currents. Also pX., P y and pz represent the current densities

in the x, y and z directions respectively. The magnetic-

field intensities along the x, y and z axis respectively will

be represented by H, H and H . The general principle
X y

involved in the establishlzent of the first equation to be

considered can be seen by treating only one surface of the

element of volume. Asswue that the area ocbao is selected.

Through this area the total current is

p - dydz - p dA %A2

Around the boundary of this surface there exist magnetic

intensity or H vectors, two of which are indicated in Fig

A2-1, namely H along the dy path and Hz along the dz path.

yzThe magnetic potential drops around the ocbao loop

taken individually are:

Th antcptnildop rudteobolo
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dul(along oc) - Hydy

dU2(aong cb) H Hzza d " Hz z + '-'- dydz

r(Hdy)1
dU A..Hydy - dyiz

dU 4(along ao) H HzdZ

In arriving at these expressions it is of course recognized

that dz is not a fmction of y and neither is dy a function

of z. The four magnetic potential drops are to be taken in

the ocbao direction around the loop since + Ix establishes

H vectors in this direction around the loop in accordance

with the right-hand rule.

From the circuital law of magnetism (equation A2-1),

it is plain that

S dl.dU l +dU 2 +dU 3 +dU 4

- Z - -Zi dydz = PxdYdz 4A2-3) V" a " a a.oy 3

or ZH aH
-- "" -p (42-4)

h In this equation px the current density existing over

the dydz face and directed along the x axis is made up of

9,

.4
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two parts. One is the conduction current density gE , where

g is the specific conductance per unit volwue and Ex is the

x component of the electric-field intensity .in volts per

meter. The other is the displacement current density,

6D x
- where Dx is the electric flux density. Since D e E,

where e is the permittivity of the iwdium, the total current

density may be written,

px = gEx + e E x

Equation (A2-4) now becomes

z g " x + e  x (A2-5Z-5)

In an exactly similar manner two other equations, for the

remaining two coordinate directions, may be derived. They are

X - z . g E + e y(A 2 -6 )

x z (.-7)
a ~ ~ -!! .. a.gE z+ C(A-7

These three equations together mete up the expression of one

of t awell's laws. They express three of the necessary relations

which zijust always exist between H and I in the electromagnetic

field.

I

I _ _ _ _ _ _ _
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B. I-axwell's Second Law.

Equations (A2-5), (A2-6) and (A2-7) are based on the

circuital law of magnetism. Another set of three equations

based on Faraday's law will now be derived. Again Fig A2-1 A

will be used with the p's replaced by flux densities B and

with the H's giving place to corresponding electric I
f

intensities (E's) expressed in volts per meter.

Consider the area ocbao and assume that the flux density

B is decreasing so that its derivative with respect to time

is negative. Also assume for the moment that the boundaries

of the area are fine wires, with practically infinite resistance

if we wish, in which emf's are induced by the time rate of

~: ,,e of B . The decrease of flux through the area will in-

duce a voltage e in the wire boundary which will be in the 4

sense ocbao. The magnitude of this voltage is given by

Faraday's law to be

e- E. dl " d X " dydz (A2-8)

where E is the electric intensity vector

1 is the displacement directed along the periphery

of loop oabco

0 is the magnetic flux crossing the dydz surface

Bxis the flux density at the dydz surface

tI\
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The minus sign accounts for the fact that the voltage

induced in the ocbao loop is measured by the time rate of

decrease of magnetic flwux through the loop.

Fly Te electric potential differences around the closed

path ocbao (taken in the righ-t-hand screw direction around

+Bx are individuallyit
dVl(along cc) , Eydy

Ezdz) CE
dv dzdy Ezdz + - dydz
2(along cb) = Ez + Y z Y

(E dy) E
dv B,- +. - d - - E dy - dydz

dv, -E dz'(along ao) z

From equation (A2-8) it is seen that

e - dv 1 + dv2 + dv 3 + dv y- - ydz -- yt

Recolgizing that B P I I'l

iz x

y z 6 t (A2-10)

If the same procedure is applied to faces dxdz and to dxdy

respectively, we find that:

* < .F ... .. ... ' .. . .
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aE 3x z _ i
- -A _ (A2-11)a z x at

and

°ap

x C) Y t

Equations (A2-5) through (A2-'[) and (A2-10) through (A2-12)

are generalized solutions to Iiaxell's first two laws in

Cartcsitut coordinates. lie are interested primarily in the

steady state sinusoidal solution. Since the H's and E's of I

the above equations are functions of Lime and space, we may

therefore make the substitutions:

-- ~ ~ ayx ( t - r'z)(A-)
E- (j Cot - rz)

E y

E - - Y(Jwt- .) (A2-i5)

and
. 0 ( ) t - r(A-16)

Sg (j wt " rz) (A'-r,)

z z ( t- )(A-8

where the 11 and Ers are function of space only, I is the

propagation constant and z is the assumed direction of

Propa"a Lion.
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If equations (A2-13) - (A2-18) are substituted in

equations (A2-5) thru (A-7) and (A2-10) thru (A2-12),

r,j the following relations are obtained (assuming, g m 0):

ay

E j mz -,o" (A2-20)

x 8x Y

__ - H =E-J ii (A2-22)I 11 CI:

'. 8y

Equtio ( = j- (AA 2-3)

'+ - - = -(A2-2)

Equations (K2-19) - (A2-24) iiay be solved simultaneously for

the E sand rfs. The results are:

I!
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=2 +z y )

Ex  T. 22 -2 5l +J

Ey =" 2 + kl y x

I -

C. ~~af z,~ll' Thrdf;. 2

-o j +r j (A2-26)y r2 +: x2K

smallT tha it ede(r x yadd nlnt.FA2-2

4--

-i z

whr k 2 a? P ~ 6

C. ~ ~ ~ ~ ~ ~ i Mwvll hr a.3

totre-odn:eaxsX dZa in__ Fi A2-2he

shows a side view of this prismp, wit th de plane of the figure

parallel to the X-Y plane. We are looking upon a side with

area dx dy. Each end has area dy dz, and the top and bottom

dx dz.
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y

dX dy D
K

z d
(b) (c)

Fig .2-2 Derivation of Divergence

This small prismatic volume is located in a vector

field which, for convenieniie, ue will call D. Flux lines

of this field pass through the prism, entering through one

surface and leaving through another. We wish to find how

many lines, if any, originate within the volume.

Referring to Fig A2-2, the number of flLx lines enter-

ing the left-hand side of the prism is equal to the aret- of

the left-hand surfacte times the normal component of field

strength, which is Dx dy dz. The number leaving the right-

hand surface is different if Dx changes in the distance dx.

If Dx is changing at the rate x as one passes from left

to right, the amount of change in the distance dx is

Dx dx. Hence the number of flux lines leaving the right-

hand surface is (Dx + x dx) dy dz. Subtracting, the
T

number of lines that leave the right-hand side in excess of

the number that enter the left-hand side is x dx dy dz.
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Similarly, the number of lines leaving the top of the prism
in excess of those entering the bottom is dy dx dz;

and the number leaving the front surface is greater than the

number entering the bacl: by b D dz x dy.

Combining these quantities, the total number of flux

lincs leaving the volume that do not enter it is

- + ) dxdy dz (A2-29) A

But divergence is defined as the number of flux lincs

originating per unit volume; so, if the volme of the prism

is dv, I
V D = + __z + ,d (A2-30)

y dv

Since Lhe volume of the prism dv is equal to dx dy dz, it

follows that

6 D D D z

V'aD _ + __z + __(A2-31)x y z

Now consider that space is divided into an unlimited j
number of small cells of volume dv, as in Fig A2-2. The -..

number of flux lines leaving one such cell, marked "a" in

the figure, is greater than the number entering that cell by

V D dv, The number originating within the adjoining cell

"b" is likewise the divergence at that location times the

qI
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* volume of that cell. The number of lines emanating from

the two cells together, considered as a unit, ia the sum

of the tzo products of divergence and volume. Adding more

cells to the group thus begun, the number of lines of flux

issuing from any volume is greater than the number entering'

that volume by the summation (or integral) of all the indi-

vidual products of divergence and volume. Hence,

Excess outward flux f V D dv Q (An t -r3e )

The flux ofC the vector field D passing through an urea a is

defined as

D *da WA-33)

and from this it follows that the net flux passing outward

through ay closed surface (the excess of the outuard flux

over the inward flux) is found by integrating over the whole

closed surface:

J D • da (A240

Now equation (A2-34) and equation (A2-32) are different

eXp.ressions for the same quantity of flux and hence may be

equated, giving



D da f. D .Q ( 35) 

In any region in which there is no electric charge, so

Qu O,[(V • D) dv aO, and hence the ? • DuO (A -36)

D. jkixwell's Fourth Law.

A basic experiment in the theory of magnetic fields

leads to the equation

B • da- 0 (A2-37)

Applying Gauss' theorem to this e :perimental result, it

appears that the magnetic field has no divergence under any

circumstances. i.e.

V. Bu o (A2-38) I
I

The discussion of Maxwell's first and second laws is

20
essentially that of Ware and Reed, while the discussion of J

the third and fourth laws follow Skilling21 closely.

E. The Wave Equations Governing Electric and Msgetic-

Phenomena in Chae-FieDielectric.

We now wish to operate on Maxwell's equations to obtain

the wave equations. Consider a dielectric containing no charges

,I
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and with zero conductivity, so that there are no conduction

currents in the dielectric. Since these are the conditions

implied 4n the previous development of Maxwellts laws, the

final equations can Just be reproduced for convenience.

They are:

V xi H a (A2-5) thru (A2-7)

V x E = (A2-10) thru (A2-12)

V • Du O (A2-36)

V. Bm u (AL)-38)

It will be observed thtft the first two equations have been

written in their vector formi rather than in the expanded

Cartesian coordinate fonn uzed previously. This was done

simiply for convenience in developing the wave equations. The

reader unfamiliar with vector operations will find an adequate

21
d±scussion in Skilling. l

In order to realize the wave equations, let us first

take the curl of (A.-IO) thru (A2-12)

7T4
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~,. H

(A2-39)

Now there ia an identity in vector analysis wblch states:

V x :' 7 J -V A + 7 V "A )(A2-40)

t

Subatituting (A2-.o) into (A2-39)

Vx H (A2-41)

But by equation (W.-36)

V. D. \. E 0 (A2-36)

Inserting (A2-36) into (A2L-Il), there ip obtained L
V

V E IV x~- (A2-42) I

A little reflectiom reveals that E ad H are continuous

functions of tlime 'nd space and that their partial

derivatives may bei taken in any order. Utilizing this

result, equation (W-42) can be put In the form .

v Em (VXH) (A2-43) -

tg
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But equation (2-5) thru (A;2-7) states

Inserting this result in (ALI-44), we get

7 v ( ) (- A244)

1I or

6tu

-' This is the general form of the wave equation. A wave

tequation in terms of II can also be obtained simply by

starting with equations (A2-5) thru (A2-'[) and proceeding

in precisely the same wanner as in the electric field case.

1* The result Is:

VP 2H (Ao,-46)

Again ve assumed a sinusoidal steady state solution, so

that the E's and 11's of equations (A-45) and (A2-k6) are

those of eqiations (A-13) thru (A2-18). Therefore for

sinusoidal variations equation (A2-45) may be written as:

and (A2-4(,c) as:

2 2

V H H2-8)
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Now as was used in equations (A2-25) thru (A2-28)

let kI W2 ge. Making this substitution, equation

(A2-47) becomes:

V 2E k2E (A2-49)

and relation (ti-16) becomes:

V '7 1 - k-11 ( 0A-5o)

Now let us look at the e':panded form of equations (A2-4.9)

2 +

" ---- - I

6 C y
8 e + a2B2 " "h

6 xz 2

- + ~. -k-
z z + .kl1 z:

6 x " 2y 2 z 2

Equation (A2-50) is similar in form. It shou d be obvious

by inspection that (A2-49) can be 0olit into two parts &a V

follows: V2 6"E ~~ -kR(A-2
Assuming our sinusoidal variation E e w(t-rz):

2 (A2-53)
za
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Substituting (A2-53) into (A2-52), we obtain

2 E~ 2 +k 2)E(25

Equation (A2-50) is operated in a similar manner to obtainj2 v H - (r2 +12) k (A,-55)

The mode of propagation under discussion is the 'TUE1

mode. This mode is characterized by the property that the

k' E and 11 fields in the direction of propagation is zero .i.e.

if Z is the direction of propadation, E and IIV are zero.

The gencral reJ.aLions betwreen wave components as expressed

by equations (A--25) thru (A.-8) show that with E and z

zero, then all other components must of necessity also be

zero, unless "! + k is at the same time equal to zero.

Thus, a transverse electromgneLic wave must satisfy the

condition

r + k 0 (A2-56)

or

Lc equation (L2-56) is inserted in equations (A2-54) and

(A2-55), then is obtained

.I.
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E. 0 (A2-57)

and

V 2 jda (A2-58)

But relations (A-57) and (A 2-58) are Laplace's equations

for E and I in the transverse plane. Since E Zand Hz are

zero, the field is transverse. The solutions for Laplace's

equation are electric and magnetic fields under stati.c conditions.

Therefore we may conclude that the TE, mode is exactly a static

distribution and analyze it as such. The equations for Z0,

velocity in thd vediumi, etc. are the same as those for aiy

standard transmission line.

L F



APPWDIX III

EIENTS OF COMP!PLEK VARIABLE THEORY AND A

DISCUSSION OF THE SCIlWARZ-CIERISTOFFEL TRANSFM01ATION

A. Elements of Corple;: Variable Theoi.

1. T Le Cauchy-Rienann equiations.

We are aware that a complex plane exists that

has a real and complex a is. We call this complex plane

the Z plane. Any point in this plane may be identifieA by

the coordinates:

z - x + jy (A5-])

We may" further define the 1-1 plane,

W f (Z) -u + jv (A3-2)

whero: u .is the real. .art of f (Z)

and v is the imaginarjy part.

Fig A3-1 A and B iilust rat tbe Z and W planes.

A24
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jy jv

A B

Z )iU1le W plae

Fi2; A3- IIJ.,tstra~ion of Z and W Plsaes

To detenrrine wlhaL conditions £ (Z) must satisfy to fulfil.

tile above relations, lot Lis examwine the derivitive;

dw
limlt All (A3-3)

dz- o z

In order for the limit (A3-3) to be valid, Az must be Wble

to approach zero from any direction. Let us write

al du + jdv
dz dx + jdy

Romeber ng that

u u=Real part of f (Z)

we riay write:
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durn dx + dy (A35)

Also v - Imaginary part of f (z), so

dv 6 dx + 6vdy (A3-6)

0 ubstituting (A 3 -5) and (AD-6) into (A3-!:.), there is obtained:

_% O +  j  ) + + ) CL N-(A

+ j b A.-)i

Inspection of' (A3-7) shows that the direction oi dz is determined

uy dy/d;,. It (Aj-'Y) is to be independent of direction, cerLain

coundi uions Lut ue satisfied. Dividing numerator and denominator

of (Ao-1) by

6u + v)

(A3-8) "

* INow 1.0t:

~j (A3-9)
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Substituting (A3-9) into (A3-8):

1 dy)

(A3 -10)

Equation (A3-10) is obviously independent of direction mid

therefore meets our criterion. The restriction on u and v

may be gotten from the equation (A3-9) which way be written as:

du 6v 6V 6aS+ j - + j ;- (Aj-n1)

Now in order for (A3-11) to be true the Real parts musL be

equal and the Imaginary parts must be equal; i.e.,

I T (A 3- .)

and

a7u 6 (A3-13)

Equations (A3-12) and(A3-13) are known as the Cauchy-Riemann

equations. Only those functions w - u + j v which satisfy

these equations can be called functions of a complex variable.

Such functions are analytic functions i.e. they have a

derivative everywhere within a arbitrarily small region in

the vicinity of some point.



. onfo=r-,'_ __ n.

Conformal mapping applies only to analytic functions.

Since we now have a mathematical relationship between the Z and '.

plcaes, it is possible to map the points of z on the Z plane

and the corresponding (or image) points on the W - F (z) plane.

If to each point there correspc)nda only one point w, the

funcLiun W =1 (Z) i . said to be single valued.

Iflow let in; see what is mcait by Lhe word "coniormul".

In Fi- A3-2(L) let the element uV distance p' in the Z plane

reprc:sont dz. Then there will be an image distance dw repre-

sented I)y qq' in the W plane. Now dw may be written as:

P1 q

I Z /I

(A) Z Plane (B) W Plane

Fi, i A3-d Conformal Mapping in the Complex Domain

dw - (L) dz (A3-14)

dz4

.-

-S
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dwNo; L is complex and may be written as:

d_ w.a G j * (A3-l5)"
dz

where

and
*-argument (dw)

Sdzdz

Substituting (A3-15) into (A3-1.4), tlhere is obtained:

dw , (aej$) dz (A3-16)

We therefore find that an element dw can be obtained from

the corresponding element dz by imiltiplying its length by

: a and rotating it through an angle 0. It therefore

follows that any ele ent of area in the Z plane is represented

In the W plane by an element of area that has the same form

as the original elewent but wViose linear dimensions are "a"

times as great and whose orientation is obtoined by turning

the original element through all angle 0. Because angles are

preserved (lines at right angles to each other in the Z plane
remain at right angles in the W plane), the transformation
is called "conformal".
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B. The Schwarz-Christoffel Transformation.

An extremely useful mapping function, of considerable

generality in its ability to meet various geometrical config-

urations, is given by the so-called Schwarz-Christoffel formula,

which reads

w~~z) =4lL _l ) " 5z 2 ,. (1.1 ) n dO +N1 (A -17'

0

Here 5 is a rnining variable in the Z-plane, zi p z ,  . z

are n finite points on the real axis, numbered in such Lun

order that

zI  < z, < < Z (A3-18)

and the quantities gi' A2 . . . g. appearing in the

exponents are aiy set of positive or negative real numbers..

The constants M and'N may have complex values, with the

possibility that N be zero, but M must, of course, have a

non-zero value. The lover limit za of the integral is an

arbitrary point in the uppcr half plane. It may be chosen

equal !o zero, or equal -to one of the points z1 .... z.

Tie independent vuriablc for the mapping function w(z) is the

upper liwit of the integral. For this reason the derivative

or the functiun is given by

* ThJs developmeut follows that of Guillemin as given in

"Mathematics of Circuit Analysis ' pp 380-384.
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dw " . .(-Zn)'9
!dz M (z-z )Nz-z2 ) .A3-19)

as may be seen from the fact that if one has

11 (z) z f(b) db (A3-20)

0

the usual definition for the derivative

dw -limit (A3-,21)-'( )
dz A z--0 z

yields

+( + - - w) A z (&) d6 (A,:.. )

Sinct A z is a small diisla-u.;ent (becor.ing zero in the limit),

one may say that for tie integration in equation (A3-22) the

i'unction f(B) is esseirtially constant and equal to the value

.,(z). It is assmed, of course, that the function '(b) is

continucus in the vicinity of the point b-z, which is a

recognized condition for the existence of the derivative in

the first place. With f(b) equal to the constant value f(z),

it may be placed in front of the integral sign, and (A3-22)

yields

w(z + A z) -w() f(z)f 1(z) Az (A--2.-)

the appro.xirimation becuuiind ex:act in the limit Az-.o0.

Completing the limit, one finds, therefore, that

dw
-= f(z) (A3-24)

isz
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The essential character of the function w(z) may now be

recoglitzed from a study of the behavior of the derivative

(A3-19) in the vicinity of the point z a zv . The first step

in this direction is to represent the factor (z - z V ) in the

polar on, as Illustrated in Fit A3-1. This rcpresenta.tion

(z .. zv ) I z-z v  *J(1) + '2i -) (A-2 )

III whi".'I h is antcr.

V -Z - V "'( v 41v +  2g 1: 11v ) (A -6VI
1Jincu the quantity p is not necessarily an integer., the right-

VI
hand tidu oi equaLion (A. )"-) nLMy ILVU B.Liy d.iffarcut v 1Lues ,

fur different inteGer va.uc: of l:.

z-plane

z I

J(Z-Zv) V

izV

Fig A3-3 Representation of (z-z in polar

form in the study of dw/dz.

I
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In order to remove this multivaluedness of the factor 
(Z-Zv

it is specified at the outset that k shall asswuic only the

value zero. This specification is equivalent to statinl that

7 the function dw/dz is to be studied on only one of che wany

V, leaves of its Rieniann surface, nwitely, on that one which

corresponds to 1: 0 in (A3-26). A typical factor in (A3-19)

then becomes

-V _j v
( " V) "  z - v z "  "1 G v (A*",'"'

and if the polut z is a.lowed I;o lie only in the uiper

hal' plaie or on the real axis of the Z-plane, it is clear

from F.L.; A"-3 that

Nf W

V(A-28)

When the polar J.'or. s

F,4 IIjc (A3-29)

and

dw _11 14,il01 lpnn
(A3-30)

are introduced, it follows that

~ p.
l(A3-31)1 2 21 n
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IL i now assumed that the variable z in the function (A3-19)

is restricted to real values only; that is, the variable

point z is thoul;ht of mi moving along the real axis fromu

- W to c, the only deviation from this bc:.avior occuring wherever

the variable point z encounters one of the critical points z •

z1 z 0 z4  z5  z

Fig A3-4 The path along which dw/dz is studied

in the Schwartz-Christoffel transformation

There it nmkes a sli.ht detour around the critical point

instead of passing directly through it. These detours way

be visualized as having the form of vai ishingly small semi-

circular arcs lying in the upper half plane, as shown in Fig A3-. I-

As the point z traverses a small. semicircular arc in the vicinity

of the point z, )the ugle Ov changes from the value x to wero,

whereas the angles of the remaining factors do not change at

all because of the assumed vanishingly small radius of the

seraicircular detour. Hence for the range

Zv-. < z < zv '1 I (A3-)
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one has

4 "..."v-"o > >o
01u 0- V- C *

(A3-33)

Ovl" V+2 O .- Cn

ad aaccording to (A3-31)

a- (gv+ P v+l+..+ a v v+*...+pn)x (A3-311)

Throughout the range (A3-32), the angle 0 is, therefore, in-

creased by the amount

9e v (A3-35)

the important feature being that this increment occurs only

1s the point z traverses the small semicircular arc. In

other words, as the point z moves alon, the real axis, the

n! angel 0 remains constant as z proceeds from one of the

criticr.1 points to the next, receiving a sudden increment

A 0 a gV i only As z passes directly over the criticv, point zv .

According to the discussion of conformal mapping, it

is recognized that the map of the function w(z) in the W-.

plane, corresponding to the reaJ. axis in the Z-plane, consists

of a succession of etraiGht-line segments between the points

's. Wl 2, .... correspond. ng respectively to zl,z2,...,the angular

If g is negative, the inequalities are reversed.

rv
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directions of two consecutive segments confluent in the

point wv differing by gvA. That is, the wap in the W-

plane of the function (A3-17), corresponding to the real

axis in the Z-plane, traversed from .a to m, has the

general character shown in Fig A3-5. This result follows

from the fact that the angle of dw/dz equals the difference

between the angles of the inercerints dw and dz, and since the

nngle of the latter rejains zero as the point z moves along

the rcal. axis, the ang.le of dir/dz inust equal thai of dw.

WI V

.. S
W- plant [ ,i .

WDI-

Fig A3-5 The map in the W-plane of the real axis

in the Z-plane shown in Fig A3- 14

Tiaii anglc, however, is shown to remain constant except when

z passes over one of the critical quantities zv. At the

corresponding points wV then, the direction of the increment

dw suddenly chanc;es by the an=ount Iv .

4 2
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jThe plot in the W-plane corresponding to the real

axia in the Z-plane is thus seen to be a polygon with the

points wi .... w as its vertexes. If
I"i

+ + +2 (A3-36)

the sum of the increments A 0 at the n vertexes wl.. n1 n
equals 2 i. We many relate the ex:terior angles to thc

interior asngles by the relation

-( t=V i (A 3-37)

or

a

V\

V (A3-38)

I '4

~Fig A3-6 Relation of interior -to exterior angles

-- r-
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Substituting this result into equation (A3-19), there is

obtained:

a a 2  a 3l(3-9

C. The Inverse Pinction.

Suppose we are interested in goini i!rom the 11 to the

,5 plane viai the Schwarz -Chriotuffel Trsfofiation. We must,

e;:cmiine the inverse function dz/dw to do this. It ums

previusJly :te.ted that

w £() U ,y) + iv (.,)y) (AJ-40)

We way invert

(1) x (u,v) + jy (u,v) (A3-41)

where a 1 'to 1 relationship exists between z and w.

!Lot us cunsider the £ol.owin- relations:

dx = udu + dv (A3-42)

dy = d + y dv (A3-43)

Equation:, (A3-112) and A3-43) are the inverse of equations

(A3";) and (A3-6) which are repeated here for convenience.

j
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Sdx + dy (A3-5)

dv ) dx + dy (A3-6)

We have for the detemiinEuit of (A3-5) and (A3-()

D 6u 3 3U 6vI.c s - 7y 7.11!,

But tLhe Cauchy Rieinunn equations state

and

-v (A3-13)

Substituting (A3-12) and (A3-]3) into (A3-41) we obtain:

D + + ( + (A3-45)

Now it was previuusly stated that

Hence
dvi du + i dv (A3-46)
(1-7Z f() dx + j dy

~Let us reexamine equation (A3-7). This relation was

lI
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dw _(61/6x +eJ v/jx) + (6u/~y + j C'/'y dy/dx (A3-7)
dz 1 + j dy/dx

We have shown in our earlier discussion that if a function

is analytic, the value of the derivative is independent of

the angle of the incremeat dz = dx + j dy. If this angle is

zero, dy is zero.

Letting dy equal zero in (A3-7)

d = au tA3,d z + J T-(317

Now apply the Cauchy-Reimann conditions.

(Equation (A3-12) and (A3-13) to equation (A3-47)). The

result is: -j

IF + + (A3-18)
~(

Re,.al.ling equations (A3-45)

D = + (A3-45)

Comparing equations (A3-45) and (A3-48) and remembering the

definition of the absolute value, we see that: [

D. If' (z) " w  (A3-49)

We previously made the statement that the following

relxations were inverse.



du C) x =d (A3-

dv- zcbd~ + r- dy

dx- - du + 6:, v

j dy du + zdv

Iftile se rulations truly tmc irivero, thien their imatricies

g (A3-)

de rineJf)er fromi the (ICi.arjmii t~ theory of iniverse r,Ltricies

a~1~~ (A3-51)
D

.Ti. re :

~. steeeetbo~nt h row
,jk cand kth co).uinl n~~~~tejl

:~~Aj. is: the minior of' tij: INth row anid th column

an

Dii h cLbeo'dtmiaturcosdrto
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In order for (A3-51) to hold, the relations between the

matricies are:

6"' 1 6V (A3-152)

1 Fu (A3-53)

T F3V (A3-5)0.)

. 1bu (A3-55)

Now

dz . d + j dy (A3-56)
dw du + j dv

Inserting dx and dy as given by (A3-42) and (A3-43)

dz _(dx16u du +. &16'v dv) + j1 ('/:, du + cy/cv dv)
dw du d (A3-57)

Divide top and bottom of (A3-57) by du

dz_ (xu. x 6vdvldu) + j (coyla a dl (A3v5u)
dv 1 + j dv/du (A-8

Rearranging, (A3-58) becomes
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dz n ( X/~u +~ a y/ u) + (6x/cv + j 6Y/Cv) dtv/du (A3-59)
dw 1 + j dv/du

Since dz/dw must be independent of the increment of

dw- du + j dv,

if the angle equals zero (i.e. J v 0).

Then:

wdz a( xlu + J Ol"y/) (A3-60)9 dw
But from (A3-52)

hCC I C (A3-52)

and from (A3-54)

Substituting (A3-52) and (A3-54) into (A3-60) we obtain

dz, 6/l - j alx (A3-61)
m ---dw D

Multiply top and bottom of (A3-61) by

giving

LIZ* (?pI/2y - V/Ix) ()V/) y o i+)
dif (cavl + j 6v/lx) (

(A3-62)
2 2

ID (6v/6 + j bv/c)
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But equation (A3-45) stated

+ (A3-45)

Substituting (Aj-45) into (A3-62)

dzdw fa" j ')v/ai WA-63)

One of the Cauchy conditions states:

Z5 " x (A3-.12)

Substituting (A3-12) into (A3-63), there is obtained

dz 1d " /x- javax (A3-64)

Equation (A3-47) stated that

dw C)u+ v
dz ;+  - (A3-47)

Inserting (A3-47) into (A3-64), the desired result is

obtained.

dz I
" -dwdz (A3-65)
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The inverse function therefore has a derivative that

is the inverse of the given function. We may therefore map

a function from the W to the Z plane, or from the Z to the W

plane. The Schwarz-Christoffel transformation from the W to

the Z plane has already been written as equation (A,-3J).

The equation from the Z to the W plane is the inverse and

* may be written:

Cl a2  c
d M (1 (w-u2) - (A3-¢,)

whore:

II is a complex constant

uI .u are the image points of the corresponding z's

In the 'd plane

- 4.. .U are the interior angles of the polygon.
n

D. Successive Transformations.

In solving two dimensional potential problems, it is

frequently convenient to use successive transformations.

Let W . F1 (z I ) (A3-67)

and

z1- F (z) (A3-(()

By elimination of z between (A3-67) and (A3-(8) we obtain

W Fo(Z) (A3-69)

TE
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The relation (A3-(8) expresses a transformation from the

Z plane into the Z plane, while (A3-67) expresses a further

transformation from the Z plane into the W plane.

Therefore the final transformation (A3-r9) may be regarded

as the result of' two successive transformations. I

i



APPENDIX IV

DETERMINATION OF THE CAPACITANCE OF STMIPLINE

A. Ca acitance of Stri line per unit length nefilectina fringin.

Upon consideration of the cross section of stripline, it can

be seen that the capacitance of this configuration is essentially

that of two parallel plate condensers connected in parallel,

neglecting fringing capacity, ('., An expreBsion for Cf will

be developed at a later point in the Appendix.

Cf er -f" C1- CTI

-~ s -Y-A C CT Cfe
,. Cf' E f f;,,, of ,r c,"\ -

(o) (b)

Fig A - 1 Cross Section of Strlplir

Fig A4-2 shows the upper half of fig A4-1. Frow this

figure CT can be determined.

A47



A48

h-wAAt

Fig A4-2 Upper Half of Fig A4-1

The electric field between the plates of Fig A2-2

is given by the expression;

V V (A4-1)

d b-t
2

where E - electric field between the plates

V w potential difference between the platee

d a distance between plates

b a ground plane spacing - cm

t - plate thickness - cm

The electric flux density is then:

D 0 r E (A-2)

o r b-t
-2C

7!=P-
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where D * electric flux density

eon permitivity of free space

e = relative permitivityr

The electric flux originating at the positive plate

and terminating on the negative plate is:

DA= o r V (w x ) Q (A4-3)
b-t

where Q - charge on one plate

A n area of one plate

w a strip width - cm

The capacitance of the parallel. plate condenser is then:

2 eCr wC a a o r't (A-4.)

Now remembering that we have two capacitors in parallel,

we obtain for the stripline capacitance neglecting fringing

effects.
o r

pp= b-t

l-14 (8.842 e w)

b-t

where C is in farad/cm.

B. Cpacitance of Stripline including fringing capacitmee.

Equation (A4-5) can be used to compute Characteristic

Dapedance up to 25 ohms. For (.hascter-Latia Impedance calculations
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above 25 obms, a term for fringing capacitance must be added

to equation (A4-5). Designating- fringing capacitance by Cf

and referring to Fig A4-1, we see that equation (A4-5)

becomes:

CTp 1 x 10- 1 4  (8.842 c r w + C ) farad/cm. (A-6)

C. Develpment of an epression L r Fringing Capacitance Cf..

We now wish to put the Schwarz-Christoffel Transformation

to work in order to find an expression for the fringing capacitance

Cf. Equation (A3-60) is repeated here for convenience with

w replaced by zI .

dz. (z I  A (z - u r - .. (Zl Un)-i (A3-66)

where the notation is the saine as that given in Appendix III

- except for z which represents points in a plane Z inter-

I mediate to the A and W planes. In other words we will perform

a mapping from the Z to the Z plane and then a second mapping

from the Z to the W plane.

Consider Fig A4-3. This figure represents one half of

the cross section of Stripline. The polygon used to perform

the Schwarz-Christoffel Transformation is shown in broken lines.

As the points + a1 proceed toward infinity, the angles associated

.4 with these points approach zero degrees, while the aniles

associated with the points + b approach the value 3 x/2.
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I
!j y  +

tB
.1,-7 -"-I-

-S.A 
X AXIS

...... -- --

. 0i
-00

Fiu A4-3 Schwarz-hrstoffel I
HIapping of Stripline: Z plane representation

In the limit, the polygon becomes degenerate and assumes

the configuration of the Stripline. It is now necessary to

choose the points uI ...... u for equation (A3-66). The points

un are those points in the Z, plane corresponding to the

points + aand + blin the Z plane. We choose the points

z + I t6 correspond to + b and choose .+a to

correspond to z = + aI. We Iso ehoose the image of 0 in the

W plane to be infinity in the Z1 plane. Consideration of Fig
A3-4 shows that this drops out the factor (z-u n )  connected

with the point 0 in equation (A3-66). It is shown in Churchill 1 7

that only 3 of the un are aribtrary. We have picked + 1 and
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I infinity as these 3 arbitrary points, leaving + a1 to be

determined. Inserting these constants into (A3-61),

there is obtained:

dz (1 -- 
0-1

(z + i)z') (z + a ) (z -7)dz I  1Z +- a I1 (Alr7

z _ 1)

M (z12  2 )

or in inter-Jral form

(& 2 - 1)1/2
d z (A.-8)

2 2

The image of the polyson in the Z )lane is shown in Fig A414.

1-o - -CDol+O

6 -

/ /\

Fig A4-4 Shwarz-Christoffel

Mapping of Stripline: Mapping of Polygon in Z., plane
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Fig Ak-i is easily understood if the discussion pertinent

to Fig A3-4 is remembered. The line segment I to (-a I ) in

the Z plane corresponds to the segment 0 to (-a 1 ) in the Z,

plane: the segment -a 1 to -bl in the Z plane to -a, to -1

in the Z plane: the segment -b1 to +b4 in the Z plane to

-1 to e I in the Z1 plane; the sepent b, to a, in the Z

plane to + 1 to a, in the Z]. plane and the segment a1 to 0

in the Z plane to a1 to 0 in the Z1 plate. Finally, since

the Schiarz-Christoffel transformation maps the polygon onto

the upper half of the W plane, the points - infinity and +

infinity are joined by a semicircle having an infinite radius. F
To evaluate (A4-8), let us first find the values of the

constan 14 and + a1 . The notation used in this eva.uation

will be that of Fig Ai- 4 .

To find M, let

z r1  J03 (A4-9)

dzln Jr I el dO1 - j z1 dO1  (A4-10)

Substituting (A-10) into (A-7), we get

j I1 2FZI -I

I - d8

-z



A54

Now let zI approach infinity i.e. let r I approach infinity.

Assuming - I much much greater than. 1 and z much mach -reater

than a, (A4-1) becomes.

dz u j M d 19 (A4-12)

Reference to Fig A4-3 and A4-4 show that as z :oes froi +j B

to - J B at he pc4irt 0, r I rotates throug;h an an.;le of i radians.

IntefTr,.tin,, both sides of (Alt-!2)

p,.- d o (A--3)i ~J+ 2u

Inrcratn: b.;th -i.es of (AtL-13) and sclvini for i., we flind

Tc, deer3:ine a,, le':

, + r, ev

then
d~=Jr I  

' o dOI  ,, Jz' de]. (A-")
dz 1 J 1  do uj z d

4 S".bstitu.int (A4-15) and (A:-1.) into (A4-7) we obtain:

:I'! (A)-17)

,M) (al2 2a r C' + r.'

(aJ2~~ ~~~ 0 .IE1 12.1_

a4 + r
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We may simplify the numerator of (A4-17) by observing that
a2

* as r I ' approaches 0, both r 1l'2 and r i ' go to zero very

quickly compared to -1. The denominator may be simplified

by observing that as rl' approaches zero, rl' 2 approaches

zero much faster than ril. Utilizing these observations

in (A!-17) and sim11plifying, we obgerve that

j B E -2 -z 1 :, dO (A,. --1
x a

Frcm Fig's A4-3 and A4-yIj we see that as z goes fron -JB

to -jA in the Z plane,.'{' rotates 'from x to 0 in the ZI plane.

Using these facts we may integrate (Al-18) and sojlve for a,.

The result is:

B
&I  (A: -15)

WAF ti,,w't wIt have dhere ned 'that ,:,)lsLW-.t.( ± .~ ar'1 1, let

U T, (A-,,-) uhi,] is repeated ;,ere for

M .. 1 1 ((v -8 )
J Y (ZI 2 a1

' fa:illate 'ie inite,,raton, let us divide (Ah-8) into

4AP', rar'.s (after fisertr,:' the ostnnt 14).



Tic resuI.t is:

-Bdz 1dz 1
1 l(Ai-2

2 1, 2

dz 2B dz-

(A-21)

2 2

Cosie zh is em ererag tt ed

-! ( 1  dzd~ ... (A4-23)

22

pr vi e th co di io aI - fs gr at r _h n_ _ m tT er fo e

Using formia 320.01 of Dwight's Integral Table, (A2l ) becomes

r dz, 12B
j- j . usin-

f Zi

The seond term of (A-20) is

We nay use formula 387 from Dwi hts Interral Tables

T2

pis greater than 1 is met. Therefore,

let us examine a practical cross-section of stripline and see

whether this condition is met. Utilizing the dimension of

one sixteenth inch double clad boards plated with 2 ounce

copper, and referring to Pij3 A-3, we find A approximately

eauakc 2 mile and B approximately equals 60 mile. Inserting
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these results in (A-19) we find: 4
a2 2 153 >> 1 (A-24)

The condition a I greater than I is then met and we proceed

to uoe Dwight 387. The result is:

-LM (a1  -1) dz

(za 2 -
1 z -

II

( a _ 1)1/2 tta2-i (A4-1)

a1 i1 az

The total 'integration of (A4k-8) is therefore:

(21 -1)/ -sin " + - (A-2r) t

aI

a 1

K-.Ia 
B
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Furthenuore a little trigonometric manipulation shows that

1 zZ~a 1
tan ______

tan "I  al = sin "
1  (A4-28)

2 2
aV]-  2 a

I - z

Substituting (A'i-:-7) and (A)-28) into (A)[-2.') there is obtained:

Iz

z 2JB [sin -i Z + B- sin- _(_
l -"l  1j B J- (A -2)

lie have now transformed the function from the Z or

primarj :qlare to the ZI or intermediate plane. However,

this is not the form we rwish for the result. The desired

result will be in the form of two parallel planes from

which a parallel plate capacity can be found. The required

transformation from the Z to the W plane is realized by the

relation:

Z1 U a tanh i w/2 (A -30)

i
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jV

z1 plane W plane

B" C"

D' C' B Be .' DA C U
-ao -I +1 +o "I

(a) (b)

Fig A4-5 Transformalion from the 7I to the W Plane

The line segmexnt A' B' in the Z plane maps into the

segment A" B" In the V plane;the segment B'C' iiaps into B" C"

and C' D' maps into C" D".

We now wish to substitute (A4.-30) into (A-29) and'

s. .q)L.1fy the result: Equation (Aii- 9) is repeated here for

convenience. It is:

4a -1

FMM sin-1 z, + *-in-1.z 1 (A-29)
2C l11 -

i

Consider the 2nd term. Upon substitution of (A -30) for zI

and the use of a trigomnetric identity we find:
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B -A 1. B-A -P.in- Bl. . sil-i a2- sinhL It--- B -- v (A' -.3)
z -.-  . ..-;

It was previously 3hon that ais large corresponding to

targe u in the UI planq, (where w- u + JV). For large u

I
it u/2

s:inh K w/2 - (A.,-32)
2

as is obvious by u :pandint sinh i .I/L in exponential VortI and

realizingt that we are interested in the function on the

real e.:is.

For princlp values and remembering that B is

much much greater than A, Dwight 507.20 simplifies to:

sin- I x = /2 - j cosh -1 x (A-33)

Substitutin, (A 2 W-3) and (A-.32) into (A),-29) we find that

. r - 1 B-A

I B-A
(n'.- cosh- =A) .7u2] (A4.-34)

Now we are only Interested in the real part of (A'I.-34).

Tal,.in& the real part, we get

i
4
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~ -~ coI2 1  D B B-A -osi1 B-A F 3n(1 /35

A(2B-A) 2 A(M1-A)

Usin- DMrijuhL 70). and (!27jwe obtala the relation:

-,,l tanh -- (A'- -j5

Now ;wo~,e .fl he deffin~tlon off al~ as~ :iven in (A4.:Lc ), we

mmy~ sie)ztituite (A-4-3") lntd (A.-3) with the result:

I ~ : B-A + iBia/ 3-
LA C. -A) I

5311 'I. wialh 'Loo solve (A): -y() f'or u. T;A~u --u '-e done y

Lrwisuposln-, *'nd tz.,in,; Lhe uo1.P oj.* 'A'li vidc-S. ThO reSult is:

(Bjjj2 ~oh (B --A7 YBA t aL B

2 (213-A)

Ax B 13f-AhI

C+6
) (All -40)
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In actual practice x >> B-A (i.e. the width of tihe ground

planes is much greater than the distance between ground

-xplanes). Therefore the e term in (A4-40) is negligible.

Making this assumption we may make the following statement:

cosh -B tanh-i B-A (x >>B-A)

+ B -i 1i: P%'j)

- C\2(B-A) B-A n 1"

Using (A 1 -41) in (A4-3S'), we see that

U M 2/ in Lk2(B-A) + B-tanh (Ah-42)

We may siM1ify (A-i .) to read

2/1 in g T- (A4-43)

2/- in A(B- '-A +  -A) tanh B-

B-A

Ie must now find out what ). would be if there were no

fringing effect Present. If the fringing effect is

neglected, the capacitance in the Z and 11 planes must be

the same. We may therefore equate the expression for

parallel plate capacitance in the Z and W planes.

j 4

i4
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goA EE Aorw or z (A-41)

w dz

where the subscripts indicate the plane of applicability.

For unit length (A4-44) simplifies to

x.(B -A) u (A44k5)

INultiplying sides of (Ah-43) by (B-A) we get

(B-A) U 2/v (B-A) in 4A(2B-A)
B-A

+ -ILI t -L-,- A (A.-)'nB

Solvinz (A4-46) for x we obtain:

x = (B-A) U -2/x (B-A) in Bt-A -1 BA (A-4-47)B-A B

Since in the ideal case of no fringing

:c - (B-A) U

the other tems in (A4-47) must be due to the fringing

effect i.e.

x + x = (B-A) U (AI-48)

Therefore

A x = 2/ (B-A) In BA+9)

xm ./[~/l -A B j
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We may put (Ai-49) in a more useful form throtigh the identity

tanh- ( I+ x
tn -x n --- (A4-50)

i c

Utilizing (A1-50) in (Al-49), we find that

x 2/n B B in- A lnA (2B-A) 1 (A4-51)B - B -A

We ray now find an expressioi .for fringing ca'acity Cf' by

ins. :ting (A4-51) into the expression for parallel plate

c&pacitance which is:

C AC S d rA -2

Upon mn,.king the substitut:ion of (Ali-51) into (A4-52) Euid

remembering that we are considering capacitance per unit

lengt _; we get

Cf' i .842 x 10 -  -A A

CcI Ir - B in E- - -A)c (A4 -53)
d [rB Bn-A B -A C

In or;.er to make (Ah-53) agree with the notation of the

literature, it is necessary to redefine A, B, and d.

Cohn defines hi- dimensions as shown in Fif, A1 -6.

__ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _'
KW A4

4.,
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Observation of Fig A4-3 and A4-6 indicates the foliowing

* .equivalence:

d b 4454
2, (A4 5Z)

A m t/2 (A4-55)

B n b/2 (A-56)

If (A4-54) through (AI-56) are substituted in (A-5)

and a little algebraic manipplation lj.rformed, Cohn's

result is obtained. It is:

Cf'a 8.842 x i0 "2  [ 2 1n +1

A r I--t/-) 3 (-t- + I

1 - -1) Th )2 1)] mf (A4-57)

Equation (A4-57) has been put in graphical form

and is shown as Fig A4-7.

II

T
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APPENDIX V

POLYGONAL CROSS SECTIONS

Consider cross sections whose peripheral curve is a

closed polygon with n sides and external angles, gr' To

map the outside of the polygon in the z-plane on the outside

of the tuit circle in the 5-plane, we shJ.l first nap the

region outside the polygon on the upper half of the t-plane.

To do this, an extended version of the Suhwar-Christoffel

transfomation will be used which is not quite the same

as the well-known Schwarz-Christoffel transform tion which

mana the initerior of a closed polygon onto an upper hal-

plane. The reason for this is that the point in the t-

plane which corresponds to the points at infinity in the

z-plane wust now be considered. It may be shown! that the

mapping function for transform.ing the region outside a

closed polygon in the z-plane to the upper half of the t-

plane is given by

_J

0. D. Kellog'g, Foundations of Potn The ,

Julius Springer, Berlin, 1929.

A67
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(t -ll~ttir'
: z-z O 0 dt (A5-1)

(t-) (t-)2

where the tIr are the points on the real axis of t corresponding

to the vertices of the polygon, C and z are constants, P is

the point in the upper half of the t-plane corresponding
I

to z = C, aid the asterisk denotes complex conjugate. Since

the suro of the exterior angles of a polygon with n vertices

V is (n + 2)1, the necessary condition on the angles is

n

nl gr

rl

I2)oF et P i, and

{ -i + t Pt = t + it ni (: )(A5-3)

i -t i +I

oo, hh. t i cOri% spou~dS L.u 6 B ,. Bt t -i

corresponds to z - o, so that infinitely remote regions in

the z.-p 2lane correspond. Rrthemore,

15' "~ +i t" t +t- 1 2t,
1I2

J-
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so that, for t2 - 0, 51 w 1. Thus, the t axis is transformed

into the unit circle 'in the B-plane. Moreover, for t2 > 0,

1 6 I > 1, that is, the upper half-plane oft t roes over into

the outside of the unit circle I BI 1 i. Hence, the outside

of the polygon in the z-plane is transferred to the outside

of the unit circle in the &-plane, such that infintely remote

points in the two planes correspond.

With the transfomation equation (A5-3), the rmappint,;

function equation (A5-1) becomes.

Z ar r db

02C

i n .hi. the r s tisfy tiue conditions I 11j - -- 4 B5 - 1.

since they lie on the unit circle. Expanding the integrand of

equation (A5-4) into inverse powers of 5 and using equation (A5-2),

we obtain

dz a a- ) + ( L + ... . .1l ---

dB -1 -1 1) f2 - -

5 bn

(A5-5)

and, therefore, upon integration, a logarithmic term will

arise unless the condition

For an alternative derivation of this transformation, see P. Frank

and R. V. Mines, Differentialgluchunon der hsik, Vol1, p. 658-66 2.
Friederich Vieweg and Bohn, Brunswick, Germany, 1935, Mary S. Rosenberg,

New York, 1943.
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n

r r 1
rl

is satisfied. This condition mst be fulfilled in order

that the nmapping 1,e conformnJ. at c. Integratiop of equation

(A5-5) yields a series developmnent of the font,

a_1  a.2

+ a + - + - 4.---0 5 82

which is valid for large b. Since the polygon is maDped

onto the unit circle, it follows that a is the equi.;valent

radius of the polygon.

We shall restrict ourselves here to the ca].cu]ltion of

the equiva-.cnt radius of reta,iular cross sections. In

this case, the anles have a comion value 1 = it, so that

i The inapping, is chown on Fit A5-1 From the

condition equation (A5-6), mid sy1nmtrj considerations, it
may be inferred that the points br on the unit circle corres-

.ionding to the vertices foa an inscribed rectangJ.e. Therefore,

we set

• 5]= elop 5. i(j( "*o), i3e(I -*o) -~

and obtain
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y

zd

044

Fig. A5-I MAPPING OF THE REGION OUTSIDE A RECTANGLE ON THE
O)UTSIDE OF.A CIRCLE
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r + 1 -2 cos 2$0

z- - + cos 24

let us integrate alon-, the unit circle; we set 5= e and the

transformation becomes

z- iJ Cos 2 4- 2 cos 2 0 d 0

Integratingi 0 from A to 0, we obtain (see Fig A5-l)

0
s-it-= i 2a1 j cos 2# - 2 cos 2 0o dO

where s is the width of the rectangle, and t the thickness.

With the -ran3formation

this becomes



A73

s- it 2 a 1  2 cos 2 -coo 2 $0  d
0

Making the substitution

o+

we obtain finally

f 0  cos 2 + sin 2 P d f (A5-7)

The integral in equation (A5-7) is an elliptic integral

and may be expressed in terms of complete elliptic integrals

of the first and second kinds. The reduction to complete

elliptic integrals is carried out in the appendix. The

result is

s -it a a, JtE I 2 ). 2 (1 sin 2P) K( 1  sn ) ]

-ia, 4iE '-l (3' -  2 (1 + sin 20) K('

2 7

(A5-8)-ia 1 ____ ~ (l~sn2P1~(T-T-~~---.I



ip

A (4

where

-.

" 2(
(..-.,;) *. )

0 -

~(1-tJ ) (.kt :

with k < 1, aro com].ete ell.iptic integrals of the first -.nd

second hinds respectively, ahO are tabulated in the literature.

From equation (A5-8)

(A5-9)

s = a. [r 1E( i+ sin 2P) . 2(;. - sin 23) K ( 7 sin 2)
2

-t a I 1-'v an 2P 2(l. sin2PK( 1 sn0

and thus,

B . Jcunike aid F. Erde, Tablec of F nctions, Dover PublUCations,

New York 1945.

I "
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2E( sin A 2P) - (1 + sin 20) K( .-" sin 20)
t2 2

tt

22

= (A5-1O)

. E( 1 i+_sin f3) - ( - sin 2P)K( = n

Equation (A5-1O) serves to determine P from the ratio of t to s,

and equation (A5-9) gives the equivalent radius aI in terms

of s or t.

Particular cnses are:

I. square cross section, P - 0

s t =a 1  [ME(r2 2K (72)j
so that

aeq= a1 - 0.5902,5 s (A5-.)

that is

the equivalent radius - 0.59025 side of the square

2. thin strip, F ,

t-ia:1 [ (0)- (O)] -0

s 4 1alE(1) n 4a,

so 1.1at t

Lhat is,

the equivalent radius - 1/4 width of the strip. (A5-12)
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The ratio of the equivalent radius to the width o the

rectancular cross section is plotted on Fin- A5-2 for valvaks

of the ratio of thickness to width from 0 to 1.

4*

.4,.
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floduction of C- ',1J 4-co 2 -sin2 P d 1to com~plete

elliptic intc,,rals.

We have

0 + sin 2 sn

.4. f~ 4 7,± o ).~ + siu I 27:d-d

00

0 1 +i sin -''

Let



I
AA2

then equation (AA-2) bedo'men

S4 sin 2P

2(1 + sin 2f JIx

0 --

I + sin : x
kx

2

x x
1+si

2-

S,.1 f + sin 2P1
- ',1.(i + sill 20,J Ul 2 d;:

0

2 1 + sin 2p3 2

J 7

1+i2

* 1(14 si - ~t) a:

lo
1 + si
_ _ _



AA3

2(1 + sin 2p) jdx

-- X2) 

2.

+( ' - ) (+ - 2P . ,.2  x

4j 2

.. 2,.- siJr1> clx ___

0
+ sin 2

V a(1 -2c .. )

Il~ 1+ sin 213

1I + sin p+

ithere
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AA4

, ) k2t 2 .

,~ ki t-)i

fill

I

E(L) f . ..._ i____ 2_______' " a

I with k < 1, are complete elliptic integrals o2 the first

and second kinds respectively, associated witi, the modulus k,

I, K(k') = dt

(1 - t 2 ) ( -- 4

is the complete elliptic integral of the first kind associated

wi Lh the complementory modulus I;' defined by

h 2 + 1,2 = 1 (AA-5)

and It may be shoini thnt*

114

1 t-) ( 1 t

r:,.1 ... taner ai-d Wv..Lson, Modern inalyeis, Oambridge University Press, ].927.
I

t~
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-,o that

0 42

j ~" is deft'ned by

C I 2

1~ -t

rund may 'je reduced -to coimle-to ellip~tic iii-terals off Lhe

£irs'L and s-eond k~id an follows:

1. 1 z J
2J 2 2'dJO - .40 - -1-"'

1w2. k 21.

Iz,

T'.i fis-t nte.-rl isI.K(k).In he econ inerra, w le

y 1 dy
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fl/k -. ______ - _____

(I0 - x -( k 2 x2 Y,- ( 2  1( 2 y2

Nowi we set

. 0. 12 2) 3/

2.2

.Y2jT ) 0. --

j. E

V o

iK(I: irs(10 AA-6)

Sithsti'miir, equation (AA-") in e~pation (MA-3) and using

I equatJlons (Ak-';) and (MA-5) ire rt et timally
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* J \JCL3 1 + si 2P
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Relation Between the Icoocemor 4
and the Crossover Point

The e: istence of the crossover point and its relation

to the iconocenter may be proved by considering the sphere

S having r' as its equator (Fig A6-1). By stereographic

projection from the pole L, any circle r' passing through 0'

and orthogonal to r' is transformed into circle y on S, also

orthogonal to r I and passing through the stereographic pro-

jection E, of 0'. By projection on the plane of the equator,

this circle becomes a straight line, which goes thromg the

projection 6 of K. The construction of Fig A6-2 is a re-

production of ICO'K0 on the plane of re obtained for

instance by rotation through 90 degrees about CO°.

SI

C

Fig A6.-I Transformation froi the Crossover Point to

the Iconocenter.

A78
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Fig A6-2 Relation Between the Iconocenter and the

"Irossuver Point.
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Transient Analysis of Coaxial Cables
Considering Skin Effect*

R. L. WIGINGTONt AND N. S. NAHMANt, ASSOCIATE MEMBER, IRE

Sumnoori-A transient mnalysts of coastal cables is made by rhe origination of this problem was In the design of
considering the ski effect of the center conductor as the distorting an oscilloscope system for observing very fast rise times,
element. Generalised cumes are presentnd by which the response ofI pores.ntigrdoclocpeStmsainl
ay leath of coaxial table can Ubre d if on poin on the at- p rln.I tigrdoclocoessesasga
tenuation vs frequency cure is known. An experimental check on delay path (usually a simulated line or a coaxial cable)
the analysis Is made by comparing mesasurements and prediction of is necessary to allow time for t he trigger circuits to
the Keepones at several different coaxial cables. detect the pulse to be observed and to start the sweep.

INTRODCTIONThe delay of this path is 50 mps or longer In present
INTRODCTIONsystems. As shiownt in this paper, the distortion In this

N A STUDY of oscilloscope systemis for use in ob- amiount of coaxial cable Is very Seriouis for millimicro.
Nserving voltage waveforms of the (duration of a few seco0nt transients. Therefore, along with the other
.1.milli microseconds (1 mpsm -10- sec), the problem limitations of oscilloscepe systems (such as rise time of

of the distortion of waveformse by the high frequency the signal aniplitiers, writing speed, and vertical senel-
loss of coaxial cable was encountered. Elementary coni- hility), the distortion (lie to the signal delay 'Cable m~ust
sideration of the problem indicated a degradation of lbe considered. Perhaps a knowledge of the form of this
fast rise timnes (I nips or less) due to greater attenuation diat ort ion will enable the extension of the range of olcil-
of the high-frequency components of the signal. loscope systemns which art limited by the signal delay

In polyethylene dielectric coaxial cables, the cotiduc- distortion.
tance loss is extremely small. Polyethylene has a dissi. If preservinig the rise times in fast pulse circuits is in
pation factor of 0.0031 at 3000 mct and less at lower any way critical to the proper operation of the circuitry,
frequencies. Likewise, in air (dielectric cables the cont- on(- anmst heginl to consider the skin effect distortion In
ductance loss is event less. lTherefore, the mnaJor p~ort ion 10-mc prf circuits for long cable runs, and in 100-mc pal
of high-frequency loss could not Ibe blamied ont leakage circit, the dlistortion would be troublesome even in
conductance. Tlhe other source of loss it' coaixial (lJt~blC is shorl cable lengths. The practice of tiuing special smaill
the series resistance of the center conductor. For analy- size coaxial cable to conserve space results in greater
uis the skin effect of the outer conductor was conmsitdered dttennumtion per unit length titan for larger cable of the
to be lumipee with the skin effect of the center conductor sammue characteristic impedance, andl thus, also makes
Increasing it slightly. Usinig empirical data to evo'luate time skin effect diatortion greater.
the skin effect constant achieves this directly. Ordinary Another example of a p~rob~lem in which the analysis
analysis of transmission lines ignore this resistance as titay be very useful is in the analysis of regenestive
being negligible. Hlowever, at frequeocies at which lte pulse generators, a circuit which is essentially a loop
skin effect of conductors becomes significant, the analy- consisting of an amplifier and a delay circuit.$ For pvac-
sis must incluide its effects, both as series resistance and tical, high rep-rate pulse generation, the delay circuit is
inductance, usually a coaxial cab~le. Thme pulse shape obtained is a

fi this analysis, it trastmis~simi line is treated as a c~omposite of the characterisa ice of the cable and of the
four-pole network. With ltec aid of -in ap~proximation amp~lifier.
which is good at high fequlencies, anm analysis includling In short, for any electronic circuit application tising
skin effect and neglect ing dielectric effects can be made. coaxial cables as transmission medi- to provide either
All calculations are in inks units. time delay or transmission of millimicrosecond pulses,

PO~sDLIAPPLCATONSthe effects of skin effect distortion must be considered.

Before proceeding with the analytical details o' the ANALYSIS
problem, a few words about the engineering applications For a transmission line of length, 1, terminated in its
would be indicative of the role which skin effect distor- characteristic impedance, Ze, and with propagation con-
tion in coaxial cables may play in contemplated and stant, 'Y, the following relation exists between Input
future systems using fast transients. (E,) and the output (E,) voltages as functions of com-

*Original manuscript received by the IRE. August 20, 1956; pe rqec:
revised magunscri pt received, October 18, 1956.

cu. Nati. Security Agency, Washing ton, D. C. I'C. C. Cutler 'The re-Kenerative pulse generator,* Pitoc. IRE,
Umiv. of Kanasai, Lawrenace, Kin. Formearly with Nail. Se- vol. 43 pp. 940-14g; February, 1955.

ArcWashinugton, 1). C. *Thme comnpltx variable is the l-aplace Transform variable p.
t~ rneData for Radio Engineers," Federal Telephone aod Eqs. (1) and (2) compris the aplace Transform eutions thne

Radio Corp., 3rd ed., p. St. system differential equations.
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E- r,'I (1) , ils
where In general I____ A 1 lterm T SLV

x+ A G +. i (2a) " '" term " Kp,

Z / R + P (2b)
.- + PC.2b) M (7)

Fot high frequencies (skin depth small with respect to 4Lv/2rf
conductor radius), the skin effect impedance of a round Using the first two terms o (6) in (5) and letting
wire Is:' Re r- vil results In

Z- ,,t-E r " , r + ( 9 11110 0111.  ( 8)and El
a b The ap (-/p) Is simply a delay term so that the In

2w,."(b verse transform of (8) Is the Inverse transfom of

conductor radius, is the permeability and Vexp (-hkp111/2R) delayed an amount Ir. The latter
exponential Is a common transform and 6 listed In

is the conductivity of the wire. ordinary Laplace Transorm tables. Its Inverse givingAt high frequencies the series resistance of a wire I the impulse response is: T

expressed by the skin effect equatin. Since an increase
in Inductance Is also caused by skin effect, It is t*ated IM - 0
an an impedance rather than as a tesistance. Therefore, ow 0 X < 0"
replacing R in (2) by Z. and .eg~ecting dielectric leakage w
(G -0), (2) becomets where

, V(KVp + pL)pC (4a) a- 14 ' nd -

Z. +" • (4b) Of greater utility in studying the distortion of fast
rise times by skin efect are the step response and the

The transfer function of a length of ';ue is then: response to a linear rise. The step response can be ob-
tained by finding the inverse tranaform of l/p times the

- - r' - () transfer function. As before, the transform 1/p exp
E, (-1kp/2Ro) is listed in tablep.6 Therefore in term# of

The inverse Laplace Transform of the transfer func- x and 0 as defined above, the step response io:
tion (S) is the impulse response of the section of line. For i'
simplification, the following approximation"was made. A() - cerfi - s k 0
Expanding the square root in the exponent of (5) by the - 0 X < 0.
binomial expansion, one obtains

cerf (y) i the "contplementary error function of y.0
-(1) - (p'I C + p"CK)'o  The linear rise referred to previously is defined pe.

KpU. cifically as the following, and it will be referred to as a
- P%/IW4- 2 "i/- + " E (-1)-' ramp input.

2..
)-( FQl)- o ,< 0. .... x-) K /-p'. ()- / ;l"

2a-xl L. s/ L -I 1>.
The first term of (6) is the delay term and the remain-

ing terms describe the waveform distortion. The series The response to F(), called f(l), is given by the con-
Is an alternating convergent series (for p'LC> p"'CK), volution of F(O) with the impulse response of the line,
Approximating it by the second term of (6), the pit ; (S).
term, results in an error less than the next term, the P6lea
term. The ratio of theme two terms will be used as() J -. )g(v)dr.measure of validity of applying thi approximation tof
specific examples. This integral reduce. to the following special cases:

'S. Ramo awl J. F. Whinnery, 'Fielde and Waves in Mdlern I S. Goldman. 'Trasformation Calcuhus and LEictrics) Tran.Radio,' John Wiley and Sons, Inc., New York, N. Y.; 1944. uls11W Pratom.Hat, Inc., New York, N. Y., p. 423; 1949.

--"T
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Case 1: 0<1 I f(t) 0O since g(i-) 0O for r <T7I The real part of y'(jw) is the attenutation constant of the
Casec I I: 7 7:51 !5T1 + a) £ , = 1 transissiontine, for t he purposes of the analysis,

fal z .r - 77 Calledl CU). " 9

A( (f) nt - pets/meter. (14

Cu.sc III: t> 774-a 2R4

4Any coaxial Cable whaose autten~uation constant obeysVI7(8/1 =0 the above law will have a straight line relation of slope

none-half between the logarithm of the attenuation con. .4ii £ Ixsuint and the logarit hin of the frequency. rhe majority
-I- ' Ie-011dI, x = I- . of typ~es of Coaxial Cable have very nearly this character.

f.. istic (see Fig. 1). The ratio of C(J) to N/1 fromt (14) is

Note that ('aw- 11 is contafinied iii (,ase IlI pirovidling therefore a Conustant for each type of Cable and can be

that the in Itegrauuil Imare liniited 1o pobi t ive va.l ties of r ouuly calctilated from the attenuation characteristic of the

for Case II - cabhle.
JConsidecring C'ase Ill ouuly and evalnuatiing with hi te

11 aid of the identity derived in- Appendix 1, one obtains 001

Al) -cerf .-- + Ceti x z acr (11) - g

8-1o

Integrating the last terin of (It) by parts one obtains o

xx cerf Cr

a x a fVX x
-cerf /- dr. (12) 4

ObPerying that the first two termis of (12) cancel the S) Strofle It inches 6) General Radio-1174A2
correalwmdling terms of (It), the function f(s) is simply, 2) Stroflx Inch 7) RG-58 A/u

3)Syfe inch ll RG-311 39, 40/u
St 19o .T) RG-8/u

S. RG-43/11

f~) f'er 4
1 !r 0 (13) References:

x - T ) 2), 3)-Brochure of Phclps-tDodge Copper Products Corp.
45) 7,1 )'Reference Data orRadio Engineers,'

with the unuderstanding that for x <a the lower limit is WeaIe fornr

zero.6-aao N, Geiberai Radio Co.

As verification, one may niote that the limit of the Fig. 1-Attenuation vs frequency characteristics for common coaxWa
ramnp relse es "a prahszr is simuply the step cals

r s i n . A o it x s la rg , t e f n t o a p p ro a c h e s c b ,

tunity, physical interpretation ofthe function required IntiwahevleoKndsbqutyof,

that this l)C true, can be evaluated for each case as follows:
1K I I 2R6C(f. 1Wf.

I-IVALUATION OF (ONSTANTrs

Usig the first two lermis of (6), the prop~agation con- ~n4' } ! ( V~ I) .

slant is app~roximfately wlurefs is tlie frequency chosen to evaluate ft. Fot con.
K ~venience in calculation let I - T11T where Ts !& the time

yK)=pT pl length of the cable and T- VZ?- is the delay per unit J
'v(~ p7 *l -length.

-YJ)= ± -.i ' 1~ '~) - -. ~~z (16)
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REsISTIVtE TEirntArIo As the first step, the transformation x-& is used in
The analysis asumes that the transmission line Is (9). The resulting function of p is

,, terminated in its characteristic imp dance which is
given in (4b). However, in the ordinary circuit, a purely t,(o) - p 0 (19)
resistive termination of value Re-V'/W would be
used. To ee at what frequencies Re would be a good or

• tapproximation for Z., the following comparison of
actual Z. with Re is made. Ple(,) - - p i 0. (20)

From (4b)
- To apply the normalized impulse response (20) as

ZL A/PL+ K R,+ *A\"plotted In Fig. 2 to a specific case, the P is calculated
', PC " Cvtf from (15) or (16) using physical data. The horizontal

K K' sale is then multiplied by P and the vertical scale di-
2RCp -R ±**.. (+7) vided by~ to obtain the Impulse response l(x+nv) vsx.

The fractional deviation of Zs from Re as a function of . .a .. 7
is less than the second term of (17) divided by Re. The m ...
smallness of the magnitude of this fraction indicates the '
closeness of approximation.

I No < "4R.CpI (18) "" - -

Since R'C-L then (18) is the same as (7). Thus, A, the -" . . -

validity constant calculated previously is also an expres-
sion of the departure of Z, from R. --T- .. ......

GKNRIRALIZATION Or TIaoRy / t
In order to present curves with which any transient .t a's 0 i tl IS is

problem Involving skin effect distortion of rise times
could be solved, the theory Is generalized. First, the Pit. 2-Nomtallsed impulse re.pone,
assumption is made that any rising binction can be ap-
proximated sufficiently closely for engineering analysis PI(P)
by a series of-a few straight line segments. The response
to any function can then be obtained from the sum of Performing the same transformation in (10), a nor.
the reslonses to the ramp functions used for approxima- malized step response is obtained.
tion. A generalized ramp response is then the function
to be plotted. kUp) -cr 4/-e 0. (21)

Recalling from the analysis t:)e three basicfunctions,

Impulse respnse - gQ) To obtain k(x + T1) vex the horizontal scale is multiplied
by the proper p.

- g( + T) - tSl. (9) Likewise, performing the same operation on (13), the
normalized ramp response is obtained.

(s)- ce( +l - d 0 (22)

Ramp response h(s) where a'- / .
f.I This represents a family of curves (Figs. 3. 4. and 5)k(x+ TI -j cerf 4/ dr (13) with a' as the parameter. Practical utilization of them

again requires only a time sale multiplication of mag.X ?. 0, all cases, nitaide A. Thus, the resonse of a particular piece of

the problem is to generalize them so that p, the constant coaxial cable is obtained for a series of ramp inputs with
which is determined by the specific case, does not appear 0-100 per cent rise times of a@P. For a'-0 the step re-
in the functions, but only in the scales to which the . Wehtranmotio.p; howver n.h ,#usda aww
responses am plotted. it an don not mate a v6mi the pijm. Tja isrtkwhlyMwith POOI. tolm~ "Iin (22tlg). ae Appeno i' for "U
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4,

Fi.3-Norimlized. rampi rcsPoilse-1,

top -, ceif 4.

cef+.-p

dp. the cablc: was approximated by five ramp functions,

an h rsos wan calculated and compared with the

EXPE~RIMENTAL. SYSTUM

Fig. 6 shows (lhe cable comparition test circuit em-
ployaing the NRl. TWIG0 traveling-wave cathode-ray

A tithes as the idicating instrument. The TW-10 has a
~ 4 ur '..il,,d ,mn~, ~bandwidt h well in excess of 2000 mc, which should be

sufficient for displaying rise times of the order of 0.1

GIM41otU Co..

8lls.(2t~) is obI'aiiiell. The ralil vol'spoiiiilig toi a' to vial
larger tli flie lirges one0 Iloltted le relatively ii,,dis- IlA.. i.

I-*.X1T-11A~l-.NTA VF.a.- IM1C t

Thei v\perilliil ;il urialiii of Ilite analysis which I- ig. 6 - Caule comprlsrioa test circuit.
has liven presented rviliinacil tilt iise oif ai ext reiliclv

i~ lui.. rilost ill4 st-ope. l'.14 ili iehs %%Ili(i 11 %%i~ e .a1 *aihlu.a 'I'll! lest p~ulse was generatedi ly a mercury contact
.11 lie Ut- a l'sc.Ii ..il iabr.,Iu % %%ve. us(.(I it, 4)1.ail iclay pulser giving a 60-volt pulse, 45 m s widean
thle ti,ar I1'ii itspol 'se of eight I ir( es oif roaixi.il11 , having at rise time of 0.25 nips. Some signal delay
TA~ oti he tl'uht (i~f e. ii hof fouir i% iis of cail de, ,ianwIiiv, (179 nips of 3 -iicli St yroflex) was required to allow time
RG 8, 11, lR -58/ Al 1, ( ;('iral Ra.dio 87.I.\2, -lilt 1 ill( I,_ for ()leral ion of I lie sweep and intensifier circuits of the
dliamete'4r Si vi Olen. %,ie esie . I'll;' sigia I alivid it) It t'[lie liilse ol,serveil at the end of the I 79-mjus delay

was called tlie standard pulse. Cable test sections of
See Acuidrreldgmienit. either I50 or 250 maps were added, and the response
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of the added sections to the standard p~se, as well as Segment, were calculated from the general curves In
the stand~ard pulse itself, were recorded photograpii Figs. 3, 4, anld S.
catly. Time reference was added to each photograph by Thte general curves consider ramp responses for ramps
applying a 1000-inc sine wave to the crt and taking of aniplit tide unity; therefore, It was necessary to car.
double exposures. rcct the anmpjlitudes its listed In Table 1. Points (in time)

ANALYSIS or DATA for calculation were preselected so that when the ramp
resptonses werc shif ted according to the correct 1# (listed

Data was taken from the photographs losing the sine fit Table 1) addition of ordinates would give the re-
wave as the time reference anid the maximum anmplitude sponse to tile standard pulse. The calculated responses
of the standard pulse as the amplitude reference. as coniparedl to the observed respottses are given fin

The rise of the standard pulise (Fig. 7) was approx- Figs. 8-11I (niext page).
lit all cases no attempt was aiade to keel) track of the

zero lttle position of the transients. No Information as
to the time at whi;+ the transient first departed front

-I **---~ - ~zero Ampjlitude after passing throuigh it test section with
- -- respect to the time at which the transient "eittered" the

test section cotuld be obtained. This dlifficulty is lte
- - - -Same am is always met fin refltintg physical traumient data

I... . m.e~e~u -oi to mathematical prediction. The litathemiatician can q
0 A""W Pa$ (erilie exactly a ltle before which the systemt in quics.

OR..i cemi. I lowever, the engineer must define file beginning
-. - -j..L..~. , ofa transientta theltineat which lte waveformn reacheo

I oflotsamte ineatstrahile vaihie.
For conipatrinoti of calcuilat ion andi~ oltisevaitoll,

therefore, lte cur-ves were shifted in litl relattive to
_______each other PA Ihle leading edges nms iie-irly coincided at

1449.* lte region of Pieepest slope.

l-M-XIAIENTAi. RtisuLTs AND lfrPARTURKS(;::iz..From te PN()t IIIKORY
Fottecomnparisonisof Figs. B.-l 1, ogle m~ayconclulde

OR ~that fin thle coaxial cables considered t ie nlajor.cause of
I . distortion of fUtct rise time tritilsiellti is the skill effect.

* I ach tyx! of cable scents to have its own chararcteriskic
0*9 ftcvdeparture fromt the predicted responlse. During this

Fig. 7-Stndard pialse and linear &Wpoxlenatio. sttudy thea causesc of sonic of the depariture has become
alparent.

ignated by five straight line-segments ats specified in the First, the analysis involves n approximation fIn tak.
followinlg Table 1. ing the inverse transformn of the transfer (unction as

TrABLE I
ANALysis1 (W STANWiAND I'UiLi

Line &.gincent End Polimis 4f &gnWinh. 0-00P entRs(10- Peccnnil, Anomittiwk) Am~isee 0 TOPr i i c
1(0.34, (1); (0.68, 0.33) 0.3.10 0.-.14 X100 second 0

2 10.62 0.33); (0.91, 0.803) 0.533 0. 2. 0.xo 4X10f*e"43 .91, 0.805); (1. 12, 1.0.1) 0.163i 0.21 0.574 0:.12, 1.031); I. 34, 0.92) -0.110 0.22 0.7115 (1 .349 ; 5.00, t.00) 0.0110 3.66 1.00

Tite approximation to lite standard ids~e is thsen a expressed illfthe i'atifdity coiuln A (7). 'TheC A for each
successiona of ramip fuinctions having rise times ;andl case ist indicated oin lte graphs (Figs. 8-1 1). As yet no
amplitudes as specified iabove anid each startig at thle qutamttitativ jmieastire ha.' beto developed to dticerne
appropriate to. iimtits of error (ltle to a puirtic-Ma.r vali of A. llowcver,

TheP and appropriate Values for it' for eacth case- were tllev~allies of A fin thle examples cmidered are be-lieved
calculated front (16)and Ws' f-a/ (bee (22)j1. Coitiideriitg to be sificitly smiall as to cattse negligible error fit the
stow each examttple (i.e., tSO0itips delay oif 3-ich St yro- lttle rantge plotled. Oule. maty nole that iii thie propaga.
Rlex), five ranlj) resltonses, one for each approximnationt tiolt constant 'Y(P) (6) thve first termi igniored is a com-
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plat (pl term) which adds nothing to the diolon P9(p) which represenits the waveforin observed on the
Ind only Insignificantly affects the amplitude. CRT wheneit e test section in iclded is given by

The analysis asmuonics a j*- law for the varlhttlon of
attenuation with frequcncy [wee (3) nd (4)). This Is ,p 1 pG(),p
very uearly trite for Styrnflex cable. flowever, cther P()G(G()-
rales haive a somewhat greater exponent, GR4874 being since transfer ftinctions of passive networks are corn-

Aas high as 0.6. A more elaltorate analysis filling P. mutative.
05t.V6O.5, Ilas beell malt'; however its usefulniessi Ini words, what titue means is that the distorting c.
iuiestiota)ble since It caliow le directly relisted to the met Cri(p) having been present both fin observation of

111111 phical~~ probulm. A realist ic approach is io search the Inputt anid outpuot of the test section allows Isolation;
for it second distorting factor stich ats dielectric loss of thie chariucleristlcs of the test section alonie. This Is the
wich In this study wits assumed -to bie negligible. basis for all coniuparison type measurement technique.

piolyethylene dielectric Cablles thanl for Styroflex, at- Parnie order of muagntitude or preferably less than that
though still it should not bse thie miajor distorting inecha. (lte to Gs(p). It is less inl all cases.
utism. Work ol this phase of tile problem is contlining.

Uelul engineerig result" maiy bie obtained even CONCLUSION

thouigh Ifie f' lauw is notl followed exedly by the cabtle, The nialysis as described in a first order theory for
Tlhe choire of lte frequencry ilt which 0 i's evaluated (16) thme transienut respionse of coaxial cables. As presented,
theit Iscoines impiort aui. Thie freciiiency chosen inliiihis i us ooeful in engiuieerig probleuus involving milhi.
study was!.e 1000 ni1c becauiso' I lie (.011npoluents( of "liost nuicroserotid traosiclett, however, litter refinemtents Ill
ittplortault 4- were Ii file' region or im() inc. (considerloig tile theory inay lerinki greater accutincy for cuble. In
it logairithlimic freqliworiy sc-ale). whl~ih dielectric loss is aut awpprecialie factor.

'Hipe indiwidth of tile 'lW- t wits icoisiterecl to lie A~ti
striift not to dist ci appmreciabuly tlie reslionse. Thei''~Nt
10 901Is-rvesit rim- time of S ifiadaircl pilse isO(.5 nips. The follitwing iheoti ity wits ooselul iii lie naulysis.
Appr.'itiiately PHt) 9W0 iti of Iunodwiultl (to I !w 3-il, ,-- /j
lotus) is ierfded it) t'iss suili a risf. 'Iidesigiiwrs of 0tt ii f "21trPI'dr = rerf
fle 1V- 10 oilscih ei'A'I owsio hiave estailletd thlit is 41"
thc 3-dil 1)oilit of file dletil mu structre is wvell Il It miay fit! verified b~y uusioig luslace TEransformuationi
exc~ess of 2000 illc itinuulgh Iio detailed data of deflectioln oplermtioial theoren..' Letting IMiidirue file otjwralom
-s .uafigtictioou of lrecluieiiry is -t'ailabde. Tlhe rioging (of taoking lte ILaplace 'Iratisforni iuuil- I lte itiverioe,
whichi is evidntl Ii sonic of lte respionsea is proliably duie
to filie slight imiedinere dim:ooioit iiis in thee sysem. e(( SW-/

Aloot he(r pqiebihilc sotirce of( et ror is in thac iuiuinei., it y dt . A ]C
of lie crt deflection asl a fuiociomi of inputt aoiilt ace. r ~ -rdA

Cliecing Iis~ psibility Ohowed tlint the crt defllction 1(X) 1,7IL I (X) I,- I -- W
was witin approximately 2 lier reoit of being linear. A J0 61
slight CorValIre of thle field of view (ometmes called Tis iiiverse line beeii lisited.6
41phlucthLin effect ") inade tramusriptiomi of amiplitiide Shr *I fiiiict ionl which is exiorem"A~ as a dlefailge In.
data diffivoill for lttle vamaw's of 3 to 5 owe after thoe Ise. tegral with it variable 'ii thle lilititn is at 11ii11-ioli oly of
gioitting of earls itslioiise E~rrors of oil) to 4 perS cenit floe limitsm, hiemi
(piositive) iniy arise- fromi li is cause .;

Thle R(-8 flexible roitet tiontibetween thle 'I N-10 ,~ ( * sit-.tJ*..
0ns111 lite wavefortui t it Ie oliser vest (inot explicitly show,, J.'f s
Iiix . 6) does iirilmte appreciable distortion in file
crt display i however, it sloes nt Invalidate ih ltecho- ATl'gNmDtX 11
aiqtief Ie to ree k m lli' anulysis. he oitiimali/altioui of (9). 00O). aiid (IS) to obtain

14'fIrrin it tFig, 6, let tile waveeirm, entering lte lest (19), (21), and (22) is gwtrfornucd as follows. Consider
oweedo lisi horetprt-o-olec by Fi(1)A' L et tloe transifer foinc- first (9) amid (10).
I leil of I lii' I Sius 146-8 conumect ig cable bse G,(/4. Also
let 14'(/t) iteprexct-l fill.- wavefferin observed oat lte CIVI' Ox + 1- ') - X''~I ?* 0 (9)
(Il( hic .1mnd-114l 11nmlst.) when thie test sect ion is tint ill.

TI:l'h leoi, Pi'(p)) F,(P)(p(). Now let (;,(#) bie the i 2 . 1frooiri lofncion ) ofie te'st sectioni of cicl. Tlhieo. hv x -I-'' ceri /l . (0

41 JIWci' 4~e,1111i.,11116,11. gf~vvt s ilole %i,kit ~iI~tit. at ~~ o i.egs *i C. fH. Wylie'. "Asvtiv l ftusiswrr'iu Matiougk~s, 9tGraw-
traeIdW111% fis fill" Iieuwicstinem. 11thik Co.. low., Nitw Yfwk, N. V.; 1 31.
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Let x-pp by the substitution I-pp. A corresponding change of
A plife-lip scale must be made in ihe limits by dividing by P

g(Ap + TI) f- (P)' t  I "t-
JifTp f(x + TI)- - . u e fl

(+ 7i) - cerf -. The function is now set up for normalization by

As written above, the func(ions g and h are still plotted letting -m= p and plotting the resulting function

on the x time scale although x does not appear In the ex- f(p) I(PP+ T) vs p

pressios. Changing the time scale to the dimensionless D,D i/
p (P has the dimensions of time) new functions g() and (1(p) - JAp + TI) - --.' cerf p .

are obtained. Finally, letting a'-a/l,

- .(0" ; O 0 (19) It , e f /1 --' "() - 9 cef dp p 0. (22)

k.(,) cerf p 0 0. (21) ACKNOWLEDGMENT

For plotting, (19) is chaaged to The cooperation of.the Naval Research Laboratory,
specifically, the group under G. F. Wall, was vital in

Vs securing the experimental data. The experiment was set
(20) up and the photographs were taken by them. Also, the

same analytical conclusions concerning the role of skin
Note that in the transformation tie sh(l e of te effect ii coaxial cab!es have been reached independently

functions were preserved, arid in order to plot the func- by R. V. Talbot, F. F. Iluggin, and C. H. Dobbie of
lionsg(x l-TI) and h(x+77) for any pirticular physical NI[..
case the horizoital scale is altered by the factor 0 for Others who have contributed significant amounts sire
Ilhat case. In (20) the vertical m|ale meust al.c, be altered (;. W. Kimball of the Departnent of D tfense, who
by the factor P. suipplied the rigorous mathematical steps -to verify (22)

('onsidering (13), maore care iti.t be used in the which had originally been deduced by physical reason-
chonge of I ini l:;Jl14. ing and 1-.*. D. Reilly of the Department of Defense who

f - did the computer programming (or the calculation of
f(x+ 7) ... cerf dr x ; 0. (13) tie curves in Fig. 3, 4, and 5. Drafting for the figures

was done by Paul Peters anid Cletus Isbell of the Uni-
In the'above, citatige the s:ale on the dumnmy variable versity of Kansas.

CORRECTION
The editors wish to Imint oaIt the following correction

to ".SB1 Ilerformance as a Function of Carrier Strength,"
by William I.. Firestone, which appeared on pages 1839-
1848 of the December, 1936 ibsue of I)ROC. UDINGS. Oil
page 1843, the illustrations in the first column identified
as Fig. 10 and Fig. 11 should be transposed.
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APPENDIX VIII

USE OF AN X-Y RECORLFS WITH A SAMPLING OSCILLOSCOPE

Abstract:

A method has been described for using an X-Y recorder

to record waveforms having both low and high repetition rates.

Pictorial and graphical recordings were made and limiting

sweep rates established for accurate graphical recording of

waveforms having repetition rates in the order of 100 cps

(asstuning the use of the specified equipmeut). It was also

shown experimentally that the inertia of the X-Y recorder was j
sufficient to integrate waveforms having a repetition rate of

over 10 megacycles per second. Finally a 300 megacycle sine I
wave is recorded and a statement is made about observation of

waveforms having higher repetition rates.

I. Introduction:

During a recent investigation into the transient properties

of strip transmission line, it became desirable to use an X-Y

recorder to record graphically a fast rise time pulse before and

after passing through a length of strip transmission line.

Considerable difficulty was encountered in actually implementing

the recording of these pulses. Since interest has been shown in

the solution of this problem it was felt that the problem and its

solution should be reported.
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II Statement of the Problem:

Any X-Y recorder has two independent inputs, one for the X

axis, the other for the Y axis. If it is desired to plot voltage

vs. time, a linear sawtooth is placed on the X axis and the voltage

of interest is placed on the Y axis. These voltages must of course

be of sufficient amplitude to drive the vertical and horizontal

amplifiers of the recorder and must vary slowly enough so that the

recorder can follow them. The recorder used was a Mosely Autograph

X-Y Recorder, which has a basic sensitivity of 5 millivolts for full

scale deflection both on the X and Y axis. Through the use of step

attenuators, this sensitivity can be reduced to 100 volts for full

scale deflection. Both X and Y axes require a minimum of one second

for full scale travel. These figures are felt to be representative of

most commercially available X-Y recorders.

Now that the signal requirements have been specified, let us see

how these requirements were met. The linear sawtooth required for

the X axis deflection was easily obtained from the Tektronix 545

Oscilloscope by setting the sweep on 100 milliseconds per centimeter

or slower and taking the output from the "Sawtooth - Main Sweep" terminals.

This voltage has a peak value of 150 volts whereas the maximum voltage

the recorder will take is 100 volts. This problem was easily solved

through the use of a one megohm potentiometer as a voltage divider.

The axis zero is set through the use of a zeroing control on the

recorder and the maximum deflection was set by ;7arying the setting of

the one megohm potentiometer.
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The voltage require.ents for the Y axis were not so easily met

as those of the X axis. The principl.i waveform of interest was a

pulse having a rise time of 0.5 nanosecond and a pulse len&th of

50 nanoseconds. Clearly a recorder requiring a full second for

full scale deflection cannot respond to a rise time 01 0.5 nano-

seccnd: How then are we to eet the requirements of the recorder

for the Y axis deflection? The answer to this problem lies in the

ue of a. oscilloscope sairlling, attachment, whose operation will be

described below.

The output of the sampling attachnent ic a series of negative

pulses which are amplitude modulated to correspond to the shape of the

waveforn under observation. The sweeping rate is set by the attach-

muent and not by the sawrtooth from the oscilloscope. Sweep speed is

a function of *the slope of the sawtooth but not of the repetition

rate. To provide a slowly varying voltage for the recorder input, the

peaks of the negative pulses must be integrated. If the number of

pulses per umit time is great enough, the inertia of the recorder

wI.ll provide the desired intergration. Since there is one pulse for

each cycle of the input waveform, a high pulse rate depends on a high

repetition rate. For low repetition rates, an integrating network is

required. Fast rise time pulses such as the output from the SKL Pulse

Generator have low repetition rates of the order of 100 cycles per

second. Fcr such pulses an integrating network will be required. It

will be shown below that since the slowest sweep rate of the sampling

unit used (Lumatron Model 222) was 100 nanoseconds for full scale

deflection (assuming that it is desirmble to see at least one cycle I
of the waveform), a minimum repetition i.ate of 10 mezacycles is of
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interest. For this frequency the inertia of the recorder will

integrate the negative pulses quite satisfactorily.

III 0per.tion of the Sampling Oscilloscope:

The sampling attachment used was the Lumatron Model 222.

The principles of operation described below as well as Fig. 1

are taken from the specification sheet for ths unit. "The

sampling unit produces a very narrow strobe pulse which samples

the signal wave form under investigation. The sum of the

sampling pulse and the instantaneous level of the signal at the

moment of swnpling is applied to the sampling diode. The output

of the sampling; diode is a narrow pulse, which varies in amplitude

in proportion to the signal at the instant of sampling. This voltage

is amplified in a linear amplifier of only moderate band width,

stretched and applied to the vertical plates of the oscilloscope.

Therefore, vertical deflection at any instant is proportional the

amplitude of signal at the instant of the strobin. In order to take

successive saxoples of the signal, the moment of sampling is advanced

progressively, relative to the start of the signal. This is done

by a fast rawp which is started by a trigger sigml. When the ramp

reaches a preset voltage, it fires an avalanche transistor. The

instant of firing is delayed by a slowly increasing voltage on which

the fast ramp rides. The slow ramp provides reset of the sweep to

zero, so that the sampling process may be repeated. The slow ramp is

derived from the oscilloscope sweeop sawtooth output.
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INPUT SAMPLE SIGNALS r
AMPL.IFI ER - lIe.5 V

(50 Ohm) 
(TRETcoERIL (To scope vehicl

omplifier)

TRIGGER INPUT
(50 Ohm) TRIGGER ..-../j STROBE

FAST RAMP GENERATOR

RESET

SAWTOOTH

0RATE UNSLANKING I-
(From scope " Unblonking out
sweep cathode (to scope Z-oxls)
follower)

Fig. I. BLOCK DIAGRAM MODEL 222' SAMPLING UNIT

IL should be noted chat the upjrent sweep speed of the sapling

,..j.u'...... is only a £uriction of the ulope of the ,iap, aLnd not of

the Actual uiieep speed of the oscilloscope.

Thc I~del 22T sync trig &er circuit locks to very high rep

ruie zij iial pulses to provide u 50 kc output to triZ;-,er the oawpling

unit".
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IV Recording of Waveforms having low repetition rates: 1

As mentioned above, fast rise time pulses normally have low

repetition rates. The repetition rate of the Model 305 SKL Pulse

Generator for instance is continuously variable up to about 150 cps.

-Since one negative amplitude modulated spike is produced for each

cycle of the input waveform, it can be seen that even at slow sweep

speeds, the number of spikes per sweep will be relatively small.

Since a slowly varying voltage is required to drive the Y axis of

the X-Y recorder, it is necessary to integrate these negative spikes.

Of course an integrating network could be built to do the job,

but it would certainly be more attractive to be able to use a

coumercially available instrument. Such an ins-Grument is a peak

reading voltmeter. A peah reading volt meter incorporates circuitry

that responds quite rapidly to fast rising positive or negative pulses

but whose response decays slowly in order to hold the peak value of

the waveform between pulses. This rise and fall time of the circuitry

will vary with the meter used. For purposes of this work a Ballantine

I Model 305 peak reading voltmeter was used and the minimum rise and

fall times were determined experimentally. The test setup is shown

as Figure 2.

Using the experimental setup shown in Figure 2, the rise and

fall times of an output pulse from the SKL Pulse generator were observed.

The results were recorded both photographically and graphically for

comparison purposes and are shown as Figures 3-6. Several comments
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SKL SGA

PULSE SIGNAL

GENERATOR 10 db IN

10Db1

44 LUMATRON
MODEL 222

SIGNAL SAMPLING CONVERTER

OUT ?
10 db

L TRIGGER SW

SAWTOOTH

BALLANTINE MAIN SWE

MODEL 305 0*
Set to

PEAK READING 12 wf
VOLTMETER TEKTRONIC

MODEL 545

___ 0__SIGNAL_ OSCILL09COPE
INU -0

GND.

Set for fu scole

Fi.2.BOC IARM FTETSEU FRGRPICLY RECORDERG

LOW REPETITION RATE SIGNALS
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a. Vertical: lv/cm b. Vertical: lv/cm

Horizontal: 0.5 x 10 9 sec/cm Horizontal: 0.5 x 10O- sec/cm

FIGURE 3

Photographic record of' Pulse Rise Times
f'or varying time scales
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c. Vertical: lv/cm d. Vertical: 2v/crn

Horizontal: 2 x 10- sec/cm Horizontal: 5 x 10-se9 c

FIGURE 3

Photographic record of Pulse Rise Times
for varying time scales
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a. Vertical: lv/cm b. Vertical: Iv/cm

horzonal: 0.5x ~ sec/cm Horizontal: 1 x 10 ' sec/cm

FIGURE 5

Photog.-aphic record of Pulse Fall Times
for varying time scales

'Mw1
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c. Vertical: lv/cm d. Vertical: lv/cm

Horizontal: 2 x 10 . 9 sec/cm Horizontal: 5 x 10"9 sec/cm

FIGURE 5

Photographic record of Pulse Fail Times
for varyirg time scales
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regarding the pictures and graphs should be made. First, the waveform

as observed on the oscilloscope is usually thought of as a series of

dots. The continuous trqce shown in the pictures was produced by the

100 millisecond/cm sweep and taking a time exposure with the camera.

For the graphic recording, a sweep of twelve seconds per centimeter

was used to allow for the time constants of the peak readiug voltmeter.

Sweep calibration showed the sweep to actually take 170 seconds rather

than the 120 seconds expected.

It was stated above that the peak reading voltmeter will follow

quite well a voltage swinging from ground to a plus or minus value but

it will not follow as well as voltage swinging from a plus or minus value

to ground. The voltage swinging from ground to a negative value

corresponds to the fall time of the SKL Pulse. Comparison of the fall

times shown by the photographs and the graphs shows good correlation

for all sweep rates. We may therefore conclude by a simple calculation

,hat if 14 seconds are allowed for full scale vertical deflection,

pulse fall time as shown by the recorder can be expected to agree with

the value shown by the oscilloscope. If the pulse rise time is compared

in a similar manner, it is found that disagreement between picture and

graph rise times begins with Figures 5c and 6c. For this sweeping rate,

the time constants of the peak reading voltmeter do not allow the re-

corder to follow the pulse rise time correctly. If the sweeping rate

shown by Figure 5b and 6b is taken as the maximum allowable a simple

calculation shows that 50 seconds should be allowed for full scale

vertical deflection of the recorder in order to obtain agreement between

oscilloscope and recorder.
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V. Recording of Waveforms having High repetition rates:

is previously stated, for higher repetition rates, the inertia

of the recorder serves to integrate the pulse without the use of

the peak reading voltmeter. If it is desired to see at least one

cycle of the waveform, then the lowest frequency of interest will

be 10 megacycles since the slowest sweep rate, as determined by

the sarpling attachment, is 10 nanoseconds per centimter. If the

connections marked "X" in Figure 2 are broken and the dotted wiring

inserted, the equipment will be set up for high frequency waveforms.

Essentially all that is done is to by-pass the peak reading voltmeter.

Figure 7 shows pictorial recordings of 10 and 300 megacycle sine waves

while Figure 8 shows graphical recordings of the same two waves.

xaminttion of these figurcs shoI good correlation. Three hundred

megacycles is the upper frequen limit of the Lwinatron Sampling

Attachnent. It is felt that if so:me type of count down unit could be

used, much higher frequencies could be recorded.
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a. 10 megacycle sine wave b. 300 megacycle sine wave

Vertical: 2v/cin Vertical: 2v/in

Horizontal: 10 x 10-9 sec/cm Horizontal: 1 x 10-9 sec/cm

FIGURE 7

Photographic Record
of 10 mc and 300 inc sine waves

I
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APPNDIX IX

PROPRTIES OF MATERIUS. MHCM R~UE11S*UiM"S,

CALCULATION OF LIVE PARAMIERS

Nominal values for the Stripline delay lines are as follows:

Item Line A Line B

Dielectric Material Glass -Teflon Glass-Epoxy Resin

Dielectric Constant (meas.) 2.73 5.27

Dielectric Loss Tangent (adv.) 0.003 0.03

Dielectric Loss Tangent (calc.) 0.00256 0.0133

Ground Plane Spacing, b (mess.) 0.113 in. o.116 in.

SCopper Thicknss, t (meas.) 0.003 in. 0.003 in.-

Characteristic Impedance., Ro 50 ohms 50 obwse

Strip Width, w (Cale.) 0.07(0 in. 0.35 in.

Length (calc. from spiral design) 7.4O m..,24.3 ft. 3.68 m.,12.1 ft.

Total Delay (calc.) 4.15xl "9 sec. 28.2xlO "9 sec.

Delay/unit length, T (calc.) 5.59xl0"9 sec. 7.65xiO sec.

Inductance/unit length, Lm (calc.) 270xlOgh/m 382xo 9 h/m

Capacitance/unit length, C (cac.) 12121 r/m 153XI o 12 /N

Value of the convergence factor,

Kl//2 nf L at 10 Mc (For accuracy 2.18x1O.2  -2
1 CM

this should be << 1.)

(c at 1 Imc (calc. from mea.) 0.0716 db/ft. 0.232 db/ft.

at 1 Kw (Cal. from curves) 0.13 db/ft. 0.185 ,b/ft.

0 (calc. from mea.) 3.21xO 12 sec. 8.29xlo "12 sec.

Ko (calc. from me".) 5.23x10"II sec. 1.88xi0 "10 sec.
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